Skip to main content

Teaching and Learning Chemical Kinetics

  • Chapter

Part of the book series: Science & Technology Education Library ((CTISE,volume 17))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andaloro, G., Donzelli, V., & Sperandeo-Mineo, R.M. (1991). Modelling in physics teaching; the role of computer simulation. International Journal of Science Education, 13, 243–254.

    Article  Google Scholar 

  • Barth, R. (1992). Mass balance in the physical chemistry curriculum — An improved approach to chemical kinetics. Journal of Chemical Education, 69, 622–623.

    Article  CAS  Google Scholar 

  • Berberan-Santos, M.N., & Martinho, J.M.G. (1990). The integration of kinetic rate equations by matrix methods. Journal of Chemical Education, 67, 375–379.

    Article  CAS  Google Scholar 

  • Blickensderfer, R. (1990). Learning chemical kinetics with spreadsheets. Journal of Computers in Mathematics and Science Teaching, 9, 35–43.

    Google Scholar 

  • Borderie, B., Lavabre, D., Levy, G., & Micheau, J.C. (1990). A simple method for analysing first-order kinetics. Journal of Chemical Education, 67, 459–460.

    Article  CAS  Google Scholar 

  • BouJaoude, S. (1993). Students’ systematic errors when solving kinetic and chemical equilibrium problems, Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Atlanta, Georgia, 16–19 April.

    Google Scholar 

  • Bykov, V.I., Elokhin, V.I., Gorban, A.N., & Yablonskii, G.S. (1991). Kinetics models of catalytic reactions. In R.E. Compton (Ed.), Comprehensive chemical kinetics, 32 (pp. 47–81). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Cachapuz, A.F.C., & Maskill, R. (1987). Detecting changes with learning in the organization of knowledge: Use of word association tests to follow the learning of collision theory. International Journal of Science Education, 9, 491–504.

    Article  Google Scholar 

  • Casado, J., López-Quintela, M.A., & Lorenzo-Barral, F.M. (1986). The initial rate method in chemical kinetics. Journal of Chemical Education, 63, 450–451.

    Article  CAS  Google Scholar 

  • Cornely, K., Crespo, E., Earley, M., Kloter, R., Levesque, A., & Pickering, M. (1999). Kinetics of Papain. Journal of Chemical Education, 76, 644–645.

    Article  CAS  Google Scholar 

  • Curtis, R.V., & Reigeluth, C.M. (1984). The use of analogies in written text. Instructional Science, 13, 99–117.

    Article  Google Scholar 

  • Dennick, R., & Crowley, M. (1994). Multimedia CD-ROM in chemical education. Education in Chemistry, 31, 91–92.

    Google Scholar 

  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science–research into children’s ideas. London: Routledge.

    Google Scholar 

  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649–672.

    Article  Google Scholar 

  • Eberhart, J.G., & Levin, E. (1991) A novel approach to rate data analysis. Education in Chemistry, 28, 110–111.

    CAS  Google Scholar 

  • Elias, E., & Zipp, C.P. (1988). The study of a simple redox reaction as an experimental approach to chemical kinetics. Journal of Chemical Education, 65, 737–739.

    Article  CAS  Google Scholar 

  • Engerer, S.C., & Cook, A.G. (1999). The Blue Bottle Reaction as a general chemistry experiment on reaction mechanism. Journal of Chemical Education, 76, 1519–1520.

    Article  CAS  Google Scholar 

  • Garnett, P.J., Garnett, P.J., & Hackling, M.W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.

    Article  Google Scholar 

  • Glynn, S.M. (1991). Explaining science concepts: A teaching-with-analogies model. In S.M. Glynn, R.H. Yeany, & B.K. Britton (Eds.), The Psychology of Learning Science (pp. 219–240). Hillsdale, New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Griffiths, A.K. (1994). A critical analysis and synthesis of research on students’ chemistry misconceptions. In H.-J. Schmidt (Ed.), Problems Solving and Misconceptions in Chemistry and Physics (pp. 70–99). Hong Kong: ICASE.

    Google Scholar 

  • Haight, G.P., & Jones, L.L. (1987). Kinetics and mechanism of the iodine-azide reaction. Journal of Chemical Education, 64, 271–273.

    Article  CAS  Google Scholar 

  • Haim, A. (1989). Catalysis: new reaction pathways, not just a lowering of the activation energy. Journal of Chemical Education, 66, 935–937.

    Article  CAS  Google Scholar 

  • Hardman, J.S. (1992). Experimental kinetics. Education in Chemistry, 29, 133–134.

    CAS  Google Scholar 

  • Hartley, J.R. (1988). Learning from computer based learning in science. Studies in Science Education, 15, 55–76.

    Article  Google Scholar 

  • Howald, R.A. (1999). The fizz keeper, a case study in chemical education, equilibrium, and kinetics. Journal of Chemical Education, 76, 208–209.

    Article  CAS  Google Scholar 

  • Justi, R.S. (1997). Models in the teaching of chemical kinetics, Unpublished Ph.D. Thesis. Reading: The University of Reading.

    Google Scholar 

  • Justi, R., & Gilbert, J. (1999a). A cause of ahistorical science teaching: use of hybrid models. Science Education, 83, 163–177.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (1999b). History and philosophy of science through models: The case of chemical kinetics. Science & Education, 8, 287–307.

    Article  Google Scholar 

  • Justi, R.S., & Ruas, R.M. (1997). Aprendizagem de química: reprodução de pedaçs isolados de conhecimento? [Learning of chemistry: reproduction of isolated pieces of knowledge?] Química Nova na Escola, 3, 23–26.

    Google Scholar 

  • Keating, C.D., Musick, M.D., Keefe, M.H., & Natan, M.J. (1999). Kinetics and thermodynamics of au colloid monolayer self-assembly. Journal of Chemical Education, 76, 949–955.

    Article  CAS  Google Scholar 

  • Krajcik, J.S. (1991). Developing students’ understanding of chemical concepts. In S. M. Glynn, R.H. Yeany, & B.K. Britton (Eds), The Psychology of Learning Science (pp. 117–147). Hillsdale, New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Labuza, T.P. (1984). Application of chemical kinetics to deterioration of foods. Journal of Chemical Education, 61, 348–357.

    Article  CAS  Google Scholar 

  • Laidler, K.J. (1987). Chemical kinetics (3rd ed.). New York: Harper & Row.

    Google Scholar 

  • Laidler, K. J. (1988). Rate-controlling step: A necessary or useful concept? Journal of Chemical Education, 65, 250–254.

    Article  CAS  Google Scholar 

  • Last, A.M. (1985). Doing the dishes: An analogy for use in teaching reaction kinetics. Journal of Chemical Education, 62, 1015–1016.

    Article  CAS  Google Scholar 

  • Leenson, I.A. (1986). Thermodynamics and kinetics of chemical equilibrium in solution. Journal of Chemical Education, 63, 437–441.

    Article  CAS  Google Scholar 

  • Leenson, I.A. (1998). Ernest Rutherford, Avogadro’s Number and chemical kinetics. Journal of Chemical Education, 75, 998–1003.

    Article  CAS  Google Scholar 

  • Leenson, I. A. (1999). The Arrhenius law and storage of food in a freezer. Journal of Chemical Education, 76, 504–505.

    Article  CAS  Google Scholar 

  • Lin, K.C. (1988). Understanding product optimization–kinetic versus thermodynamical control. Journal of Chemical Education, 65, 857–1066.

    Article  CAS  Google Scholar 

  • Logan, S.R. (1984). Introductory reaction kinetics–an unacknowledged difficulty. Education in Chemistry, 21, 20–22.

    CAS  Google Scholar 

  • Macomber, R.S. (1994). A perfect (gas) analogy for kinetic versus thermodynamic control. Journal of Chemical Education, 71, 311–312.

    Article  CAS  Google Scholar 

  • Mata-Perez, F., & Perez-Benito, J. (1987). The kinetic rate law for autocatalytic reactions. Journal of Chemical Education, 64, 925–927.

    Article  CAS  Google Scholar 

  • Myers, R.T. (1990). Ants and chemical kinetics. Journal of Chemical Education, 67, 761–762.

    Article  CAS  Google Scholar 

  • Reid, K.L., Wheatley, R.J., Horton, J.C., & Brydges, S.W. (2000). Using computer assisted learning to teach molecular reaction dynamics. Journal of Chemical Education, 77, 407–409.

    Article  CAS  Google Scholar 

  • Russel, J.W., & Kozma, R.B. (1994). 4M:CHEM–multimedia and mental models in chemistry. Journal of Chemical Education, 71, 669–670.

    Article  Google Scholar 

  • Schibeci, R.A. (1989). Computers in the chemistry classroom. Education in Chemistry, 26, 16–18.

    CAS  Google Scholar 

  • Schultz, E. (1997). Dice-shaking as an analogy for radioactive decay and first-order kinetics. Journal of Chemical Education, 74, 505–507.

    Article  CAS  Google Scholar 

  • Signorella, S., Garcia, S., & Sala, L.F. (1999). An easy experiment to compare factors affecting the reaction rate of structurally related compounds. Journal of Chemical Education, 76, 405–408.

    Article  CAS  Google Scholar 

  • Simonyi, M., & Mayer, I. (1985). A deductive approach to elementary chemical kinetics. Education in Chemistry, 22, 52–53.

    CAS  Google Scholar 

  • Smith, S.G., & Jones, L.L. (1989). Images, imagination, and chemical reality. Journal of Chemical Education, 66, 8–11.

    Article  CAS  Google Scholar 

  • Sutherland, D. (1989). Microcomputer interfacing. Education in Chemistry, 26, 148–149.

    CAS  Google Scholar 

  • Swiegers, G.F. (1993). Applying the principles of chemical kinetics to population growth problems. Journal of Chemical Education, 70, 364–367.

    Article  CAS  Google Scholar 

  • Tan, X., Lindenbaum, S., & Meltzer, N. (1994). A unified education for chemical kinetics. Journal of Chemical Education, 71, 566–567.

    Article  CAS  Google Scholar 

  • Tawarah, K.M. (1987). An example of a constant-rate reaction. Journal of Chemical Education, 64, 534–536.

    Article  CAS  Google Scholar 

  • Thiele, R.B. (1994). Teaching by analogy. Education in Chemistry, 31, 17–18.

    CAS  Google Scholar 

  • Thiele, R.B., & Treagust, D.F. (1994). The nature and extent of analogies in secondary chemistry textbooks. Instructional Science, 22, 61–74.

    Article  Google Scholar 

  • Thiele, R., & Treagust, D.F. (1995). Analogies in chemistry textbooks. International Journal of Science Education, 17, 783–795.

    Article  Google Scholar 

  • Toby, S. (2000). The relationship between stoichiometry and kinetics. Journal of Chemical Education, 77, 188–190.

    Article  CAS  Google Scholar 

  • Treagust, D., Venville, G., Harrison, A., Stocklmayer, S., & Thiele, R. (1995). Teaching analogies in science in a systematic way. Workshop presented at the National Association Research Science Teaching Conference, Philadelphia, 23–26 March.

    Google Scholar 

  • Van Driel, J.H., & De Vos, W. (1989a). Sneller, harder, vaker. Over het onderwerp reactiesnelheid in 4-HAVO/VWO [Faster, more powerful and more often. On reaction rates in Grade 10]. NVON-Maandblad, 14, 291–295.

    Google Scholar 

  • Van Driel, J. H., & De Vos, W. (1989b). Welke reactie wordt versneld? Een andere introductie van katalyse in HAVO en VWO [Which reaction goes faster? A different introduction of catalysis in secondary education]. NVON-Maandblad, 14, 390–394.

    Google Scholar 

  • Webb, M. J. (1985). Analogies and their limitations. School Science and Mathematics, 85, 645–649.

    Article  Google Scholar 

  • Whitnell, R.M., Fernandes, E.A., Almassizadeh, F., Love, J.J.C., Dugan, B.M., Sawrey, B.A., & Wilson, K.R. (1994). Multimedia chemistry lectures. Journal of Chemical Education, 71, 721–725.

    Article  CAS  Google Scholar 

  • Williamson, V. M. & Abraham, M.R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32, 521–534.

    Article  Google Scholar 

  • Wood, D.A. (1975). A bibliography of chemical kinetic and equilibrium instructional models. School Science and Mathematics, 75, 627–633.

    Article  Google Scholar 

  • Wood, J.A. (1989). Simulating the effect of temperature on reaction rates. Education in Chemistry, 26, 22–23.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Justi, R. (2002). Teaching and Learning Chemical Kinetics. In: Gilbert, J.K., De Jong, O., Justi, R., Treagust, D.F., Van Driel, J.H. (eds) Chemical Education: Towards Research-based Practice. Science & Technology Education Library, vol 17. Springer, Dordrecht. https://doi.org/10.1007/0-306-47977-X_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47977-X_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1112-2

  • Online ISBN: 978-0-306-47977-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics