Skip to main content

Passive Reduced-Order Multiport Models

  • Chapter
IC Interconnect Analysis
  • 367 Accesses

Summary

In this chapter, we described multiport interconnect modeling using PRIMA. Reduced order models of multiport circuits can be obtained via projections onto Krylov subspaces. Krylov vectors, bases for Krylov subspaces, contain the same information with moments, but numerically better conditioned. Thus their use allow us to obtain very high order accurate reduced order models. In addition, PRIMA exploits the properties of RLC circuit formulation to generate guaranteed stable and passive models. In the next chapter, we explain how to combine these frequency-domain macromodels with nonlinear drivers and receivers in a SPICE-like simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Raghavan, E. Bracken, and R. A. Rohrer, “AWESpice: A general tool for the accurate and efficient simulation of interconnect problems,” in Proc. Design Automation Conference, June 1992.

    Google Scholar 

  2. S.-Y. Kim, N. Gopal, and L. T. Pillage, “Time-domain macromodels for VLSI interconnect analysis,” IEEE Trans. on Computer-Aided Design, vol 13,no. 10, pp. 1257–1270, Oct. 1994.

    Google Scholar 

  3. R. Acar, M. Nakhla, P. Gunupudi, and E. Chiprout, “Passive interconnect reduction algorithm for distributed/measured networks,” IEEE Trans. on Circuits and Systems — II, vol. 17,no. 4, pp. 287–301, Apr. 2000.

    Google Scholar 

  4. G. Strang, Introduction to Linear Algebra, Second Edition. Wellesley-Cambridge Press, June 1998.

    Google Scholar 

  5. G. H. Golub and C. F. Van Loan, Matrix Computations, Third Edition. Baltimore: The Johns Hopkins University Press, 1996.

    Google Scholar 

  6. C.-T. Chen, Linear System Theory and Design, Third Edition. New York: Oxford University Press, 1999.

    Google Scholar 

  7. Y. Saad, Iterative Methods For Sparse Linear Systems. Boston, MA: PWS Pub. Co., 1996.

    Google Scholar 

  8. C. D. Villemagne and R. E. Skelton, “Model reductions using a projection formulation,” Int. J. Control, vol. 46,no. 6, pp. 2141–2169, 1987.

    Google Scholar 

  9. H. M. Kim and R. R. Craig Jr., “Structural dynamics analysis using an unsymmetric block Lanczos algorithm,” Int. Journal for Numerical Methods In Engineering, vol. 26, pp. 2305–18, 1988.

    Google Scholar 

  10. E. J. Grimme, “Krylov projection methods for model reduction,” Ph.D. dissertation, Univ. of Illinois, Urbana-Champaign, 1997.

    Google Scholar 

  11. W. E. Arnoldi, “The principle of minimized iteration in the solution of the matrix eigenvalue problem,” Quart. Appl. Math., vol. 9, pp. 17–29, 1951.

    MathSciNet  MATH  Google Scholar 

  12. C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Nat. Bur. Standards, vol. 45. pp. 255–282,1950.

    MathSciNet  Google Scholar 

  13. D. L. Boley, “Krylov space methods on state-space control models,” Circuits Syst. Signal Process. vol. 13,no. 6, pp. 733–758, 1994.

    MathSciNet  MATH  Google Scholar 

  14. J. I. Aliaga, D. L. Boley, R. W. Feund, and V. Hernandez, “A Lanczos-type method for multiple starting vectors,” Mathematics of Computation, vol. 69, pp. 1577–1601, 2000.

    Article  MathSciNet  Google Scholar 

  15. P. Feldmann and R. W. Freund, “Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm,” in Proc. 32nd IEEE/ACM Design Automation Conf., pp. 474–479, Jun. 1995.

    Google Scholar 

  16. R. W. Freund and P. Feldmann, “Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Padé approximation,” in Proc. Design Automation and Test in Europe Conf., pp. 530–537, Feb. 1998.

    Google Scholar 

  17. B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis. Enlewood Cliffs, NJ: Prentice-Hall Inc., 1973.

    Google Scholar 

  18. R. A. Rohrer and H. Nosrati, “Passivity considerations in stability studies of numerical integration algorithms,” IEEE Trans. on Circuits and Systems, vol. CAS-28,no. 9, pp. 857–866, Sep. 1981.

    Google Scholar 

  19. A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced-order interconnect macromodeling algorithm,” in Tech. Dig. 1997 IEEE/ACM Int. Conf. on Computer-Aided Design, Nov. 1997.

    Google Scholar 

  20. A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced-order interconnect macromodeling algorithm,” IEEE Trans. on Computer-Aided Design of CAS, vol. 18,no. 8, pp. 645–654, Aug. 1998.

    Google Scholar 

  21. A. Odabasioglu, M. Celik, and L. Pileggi, “Practical considerations for passive reduction of RLC circuits,” in Proc. 36th IEEE/ACM Design Automation Conf., pp. 214–219, Jun. 1999.

    Google Scholar 

  22. K. J. Kerns and A. T. Yang, “Preservation of passivity during RLC network reduction via split congruence transformations,” in Proc. 34th IEEE/ACM Design Automation Conf., pp. 34–39, Jun. 1997.

    Google Scholar 

  23. K. J. Kerns and A. T. Yang, “Preservation of passivity during RLC network reduction via split congruence transformations,” IEEE Trans. on Computer-Aided Design of CAS, vol. 17,no. 7, pp. 582–591, Jul. 1998.

    Google Scholar 

  24. I. M. Elfadel and D. D. Ling, “A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks,” in Tech. Dig. 1997 IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 66–71, Nov. 1997.

    Google Scholar 

  25. R. W. Freund, “Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms,” in Proc. 36th IEEE/ACM Design Automation Conf., Jun. 1999.

    Google Scholar 

  26. A. C. Cangellaris, S. Pasha, J. L. Prince, and M. Celik, “A new discrete transmission line model for passive model order reduction and macromodeling of high-speed interconnections,” IEEE Trans. on Advanced Packaging, vol. 22, pp. 356–364, Aug. 1999.

    Google Scholar 

  27. M. Kamon, N. A. Marques, L. M. Silveira, and J. White, “Automatic generation of accurate circuit models of 3-D interconnect,” IEEE Trans. on Components, Packaging, and Manufacturing Tech. — Part B, vol. 21, pp. 225–240, Aug. 1998.

    Google Scholar 

  28. A. E. Ruehli and A. C. Cangellaris, “Progress in the methodologies for the electrical modeling of interconnects and electronic packages,” Proc. IEEE, vol. 89,no. 5, pp. 740–771, May 2001.

    Article  Google Scholar 

  29. A. C. Cangellaris and M. Celik, “Order reduction of high-speed interconnect electrical models: the issue of passivity,” in Proc. IC/Package Design Integration, pp. 132–137,1998.

    Google Scholar 

  30. S. Pasha, M. Celik, A. C. Cangellaris, and J. L. Prince, “Passive SPICE-compatible models of dispersive interconnects,” in Proc. 49th Electronic Components and Technology Conference, pp. 493–499, 1999.

    Google Scholar 

  31. A. E. Ruehli, “Equivalent circuit models for three-dimensional multiconductor systems,” IEEE Trans. Microwave Theory Tech., vol. MTT-22, Mar. 1974.

    Google Scholar 

  32. R. W. Newcomb, Linear Multiport Synthesis. New York: McGraw-Hill, 1966.

    Google Scholar 

  33. A. Ruhe, “The rational Krylov algorithm for nonsymmetric eigenvalue problems III: complex shifts for real matrices,” BIT, vol. 34, pp. 165–176,1994.

    MathSciNet  MATH  Google Scholar 

  34. Q. Yu, J. M. L. Wang, E. S. Kuh, “Passive multipoint moment matching model order reduction algorithm on multiport distributed interconnect networks,” IEEE Transactions on Circuits and Systems — I: Fund. Theory and Appl. vol. 46,no. 1, pp. 140–160, Jan. 1999.

    MathSciNet  Google Scholar 

  35. A. Odabasioglu, “Passive reduced-order interconnect macromodeling algorithm,” Ph. D. Thesis, Carnegie Mellon Univ., 1999.

    Google Scholar 

  36. Y. Saad, “Krylov subspace methods for solving large unsymmetric linear systems,” Math. Comp., vol. 37, pp. 105–126, 1981.

    MathSciNet  MATH  Google Scholar 

  37. H. Levy, W. Scott, D. MacMillen, and J. White, “A rank-one update method for efficient processing of interconnect parasitics in timing analysis,” in Proc. 37th IEEE/ACM Design Automation Conf, Jun. 2000.

    Google Scholar 

  38. P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Padé approximations via the Lanczos process,” IEEE Trans. on Computer-Aided Design of CAS, vol. 14,no. 5, pp. 639–649, May 1995.

    Google Scholar 

  39. L. M. Silveira, M. Kamon, and J. White, “Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures,” in Proc. 32nd IEEE/ACM Design Automation Conf, pp. 376–380, San Francisco, Jun. 1995.

    Google Scholar 

  40. M. Celik and A. C. Cangellaris, “Simulation of multiconductor transmission lines using Krylov subspace order-reduction techniques,” IEEE Trans. on Computer-Aided Design, vol. 16,no. 5, May 1997.

    Google Scholar 

  41. J. E. Bracken, D.-K. Sun, Z. J. Cendes, “S-domain methods for simultaneous time and frequency characterization of electromagnetic devices,” IEEE Trans. on Microwave Theory and Techniques, vol. 46,no. 9, pp. 1277–1290, Sep. 1998.

    Article  Google Scholar 

  42. J. Cullum, A. Ruehli, and T. Zhang, “A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation,” IEEE Trans. on Circuits and Systems — II, vol. 47, Apr. 2000.

    Google Scholar 

  43. K. Gallivan, E. Grimme, and P. Van Dooren, “Asymptotic waveform evaluation via Lanczos method,” Appl. Mat. Lett., vol. 7,no. 5, pp. 75–80, 1994.

    Google Scholar 

  44. L. M. Silveira, M. Kamon, I. M. Elfadel, and J. White, “Coordinate-transformed Arnoldi for generating guaranteed stable reduced-order models for RLC circuits” in Tech. Dig. 1996 IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 288–294, Nov. 1996.

    Google Scholar 

  45. Z. Bai, R. D. Slone, W. T. Smith, and Q. Ye, “Error bound for reduced system model by Padé approximation via the Lanczos process,” IEEE Transactions on Computer-Aided Design of CAS, vol. 18,no. 2, Feb. 1999.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Passive Reduced-Order Multiport Models. In: IC Interconnect Analysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47971-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47971-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7075-4

  • Online ISBN: 978-0-306-47971-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics