Skip to main content

Resonance Raman Studies in Photosynthesis — Chlorophyll and Carotenoid Molecules

  • Chapter
  • 705 Accesses

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 3))

Summary

After a short introduction to the physical principles that govern resonance Raman spectroscopy, the various possibilities of this technique for studying (bacterio)chlorophyll and carotenoid molecules within photosynthetic systems are briefly discussed. Marker bands for coordination state of the central Mg atom and for the interaction state of the various carbonyl of (bacterio)chlorophyll molecules are described. A series of examples are given, illustrating how resonance Raman spectroscopy may help in: (1) assessing the molecular structure of achlorin-type electron carrier; (2) precisely determining the configuration of a protein-bound carotenoid molecule; (3) measuring the interaction strength of the different carbonyl substituents of (bacterio)chlorophyll in a given proteic binding site; and (4) obtaining information on the electronic excited states involved in the photosynthetic process. Literature concerning the application of time-resolved resonance Raman to bacteriochlorophyll and carotenoid molecules in photosynthetic systems is also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson GH, Hayashi H, Tasumi M and Kolaczkowski S (1990) Picosecond resonance Raman spectroscopy of Rhodobacter sphaeroides reaction centers. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria, pp 140–146. Springer-Verlag, Berlin

    Google Scholar 

  • Boldt NJ, Donohoe RI, Birge RR and Bocian DF (1987) Chlorophyll model compounds: Effects of low symmetry on the resonance Raman spectra and normal mode descriptions of Nickel(II) porphyrins. J Am Chem Soc 109: 2284–2298

    Article  CAS  Google Scholar 

  • Braumann T, Vasmel H, Grimme LH and Amesz J (1986) Pigment composition of the photosynthetic membrane and reaction centers of the green bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 848: 83–91

    CAS  Google Scholar 

  • Carey PR (1982) Biochemical Applications of Raman and Resonance Raman Spectroscopies. Academic Press, New York.

    Google Scholar 

  • Cotton TM and vanDuyne RP (1981) Characterization of bacteriochlorophyll interactions in vitro by resonance Raman spectroscopy. J Am Chem Soc 103: 6020–6026

    CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. EMBO J. 8: 2149–2169

    PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex: electron density map at 3 Å resolution anda model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  PubMed  CAS  Google Scholar 

  • Donohoe RI, Frank HA and Bocian DF (1988) Resonance Raman spectra and normal mode descriptions of a bacteriochlorophyll amodel complex. Photochem Photobiol. 48 531–537

    PubMed  CAS  Google Scholar 

  • Feiler U, Mattioli TA, Katheder I, Scheer H, Lutz M and Robert B (1994a) Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. J. Raman Spectrosc 25: 365–370

    Article  CAS  Google Scholar 

  • Feiler U, Albouy D, Pourcet C, Mattioli TA, Lutz M and Robert B (1994b) Structure and binding site of the primary electron acceptor in the reaction center of Chlorobium. Biochemistry 33: 7594–7599

    Article  PubMed  CAS  Google Scholar 

  • Feiler U, Albouy D, Lutz M and Robert B (1994c) Pigment interactions in chlorosomes of various green bacteria: a resonance Raman study. Photosynth Res 41: 175–180

    Article  CAS  Google Scholar 

  • Feiler U, Albouy D, Mattioli TA and Robert B (1994d) Resonance Raman studies of the primary electron donor in the reaction centre of Chlorobium limicola. Biochemistry (submitted)

    Google Scholar 

  • Fowler GJS, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at α Tyr 44 and 45 Biochem J 299: 695–700

    PubMed  CAS  Google Scholar 

  • Fujiwara M and Tasumi M (1986) Resonance Raman and infrared studies on axial coordination to chlorophylls a and b in vitro. J Phys Chem 90: 250–255

    CAS  Google Scholar 

  • Fujiwara M, Hayashi H, and Tasumi M (1988) Low-frequency vibrational spectra of chlorophylls a and b insolution: effects of axial ligation. Croatica Chem Acta 61: 435–446

    CAS  Google Scholar 

  • Hashimoto H and Koyama Y (1990) The 2A g1 state of a carotenoid bound to spinach chloroplast as revealed by picosecond transient Raman spectroscopy. Biochim Biophys Acta 1017: 181–186

    CAS  Google Scholar 

  • Hayashi H, Noguchi T, Tasumi M and Atkinson GH (1991) Vibrational spectroscopy of excited electronic states in carotenoids in vivo. Biophys J 60: 252–260

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt P, Griebenow K, Holzwarth A and Schaffner K (1991) Resonance Raman spectroscopic evidence for the identity of the bacteriochlorophyll c organization in protein-free and protein containing chlorosomes from Chloroflexus aurantiacus. Z Naturforsch 46c: 228–232

    Google Scholar 

  • Iwata K, Hayashi H and Tasumi M (1985) Resonance Raman studies of the conformations of all-trans carotenoids in light-harvesting systems of photosynthetic bacteria. Biochim Biophys Acta 810: 269–273

    CAS  Google Scholar 

  • Jones M, Dawson MH, Mattioli TA, Hunter CN and Robert B (1994) Mutations at the M210 Tyr level in bacterial reaction centers do not affect charge localization on the primary donor. FEBS Lett 339: 18–24

    PubMed  CAS  Google Scholar 

  • Kirmaier C and Holten D (1987) Primary photochemistry of reaction centers from the photosynthetic purple bacteria. Photosynth Res 13: 225–260

    Article  CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K, Tsukida K and Yamashita KJ (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction centers of Rhodopseudomas sphaeroides G1C with those of cis-trans isomers from β-carotene. Biochim Biophys Acta 680:109–118

    CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K and Tsukida K (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2) Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-Photobiochem Photobiophys 5:139–150

    CAS  Google Scholar 

  • Koyama Y, Umemoto Y and Akamatsu A (1986) Raman spectra of chlorophyll forms. J Molecular Struct 146: 273–287

    Article  CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Nakata M and Tasumi, M (1988) Raman and infra-red spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene key bands distin-guishing stretched or terminal bent configurations from central-bent configurations. J Raman Spectrosc 19: 37–49

    Article  CAS  Google Scholar 

  • Kuki M, Hashimoto H and Koyama Y (1990) The 21Ag state of a carotenoid bound to the chromatophore membrane of Rhodobacter sphaeroides 2.4.1. as revealed by transient resonance Raman spectroscopy. Chem Phys Lett 165: 417–422

    Article  CAS  Google Scholar 

  • Lutz M, (1972) Resonance Raman spectroscopy of plant pigments in solution and included in chloroplast layers. Compt Rend Acad Sci Ser. B, 275: 97–504

    Google Scholar 

  • Lutz M (1974) Resonance Raman spectra of chlorophyll in solution. J. Raman Spectrosc 2: 497–516

    Article  CAS  Google Scholar 

  • Lutz M (1977) Antenna chlorophyll in photosynthetic membranes: a study by resonance Raman spectroscopy. Biochim Biophys Acta 460: 408–430

    PubMed  CAS  Google Scholar 

  • Lutz M (1979) Application de la diffusion Raman de résonance aux pigments chlorophylliens. Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Lutz M. (1980) Resonance Raman studies of the bacterial photosynthetic reaction center. In: Murphy WF (ed) Proc. VIIth Intern. Conf on Raman Spectroscopy, pp 520–521. North Holland, Amsterdam

    Google Scholar 

  • Lutz M (1984) Resonance Raman Studies in Photosynthesis. In: Clark RJH and Hester RE (eds) Advances in IR and Raman Spectroscopy. Vol 11, pp 211–300. John Wiley and Sons, New York

    Google Scholar 

  • Lutz M and Kléo J (1974) Diffusion Raman de resonance de la chlorophylle d. Compt Rend Acad Sci Paris 279:1413–1416

    CAS  Google Scholar 

  • Lutz M and Mäntele W (1991) Vibrational spectroscopy of chlorophylls. In: Scheer H (ed) The Chlorophylls, pp 855–902. CRC press, Boca Raton, Florida

    Google Scholar 

  • Lutz M and Robert B (1988) Chlorophylls and the photosynthetic membrane. In: Spiro TG (ed) Biological Applications of Raman Spectroscopy. Vol 3, pp 47–411. John Wiley and Sons, New York

    Google Scholar 

  • Lutz M and van Brakel G (1988) Ground-state molecular interactions of bacteriochlorophyll c in chlorosomes of green bacteria and in model system: a resonance Raman study. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 23–34, Plenum Press, New York and London

    Google Scholar 

  • Lutz M, Kléo J, Gilet R, Henry M, Plus R and Leicknam JP (1975) Vibrational spectra of chlorophyll a and b labelled with 26Mg and 15N In: Klein ER and Klein PD (eds) Proc 2nd International Conference on Stable Isotopes. Oak-Brook, Ill, pp 462–468. US Dept of Commerce, Springfield, Va.

    Google Scholar 

  • Lutz M, Kléo J and Reiss-Husson F (1976) Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas spheroides. Biochem Biophys Res Comm 69: 711–717

    Article  PubMed  CAS  Google Scholar 

  • Lutz M, Chinsky L and Turpin PY (1983) Triplet states of carotenoid bound to the reaction centers of photosynthetic bacteria. Time resolved resonance Raman spectroscopy, Photochem Photobiol 36: 503–513

    Google Scholar 

  • Lutz M, Szponarski W, Berger G, Robert B and Neumann J-M (1987) The stereoisomerism of bacterial, reaction center-bound carotenoids revisited: an electronic absorption, resonance Raman and 1H-NMR study. Biochim Biophys Acta 894: 423–433

    CAS  Google Scholar 

  • Mäntele WG, Wollenweber AM, Nabedryk E and Breton J (1988) Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: implications for the binding of the pigments in the reaction center from photosynthetic bacteria. Proc Natl Acad Sci USA 85: 8468–8472

    PubMed  Google Scholar 

  • Mattioli TA, Robert B and Lutz M (1989) Time-resolved resonance Raman spectroscopy of the P +BPh-Q-state in bacterial reaction centers. In: Bertoluzza A, Fagnano C and Monti P (eds) Spectroscopy of Biological Molecules. State of the Art, pp 303–304) Esculapio, Bologna

    Google Scholar 

  • Mattioli TA, Hoffmann A, Robert B, Schrader B and Lutz M (1991) Primary donor structure and interactions in bacterial reaction centers from near-infrared Fourier-transform resonance Raman spectroscopy. Biochemistry 30: 4648–4654

    PubMed  CAS  Google Scholar 

  • Mattioli T, Sockalingum D, Lutz M, Robert B (1992) Low temperature Fourier-transform Raman studies on bacterial reaction centers. In: Murata N (ed) Research in Photosynthesis, Vol.1, pp 403–408. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mattioli TA, Hoffmann A, Sockalingum DO, Schrader B, Robert B, and Lutz M (1993) Application of near IR Fourier transform resonance Raman spectroscopy to the study of photosynthetic proteins. Spectrochim Acta 49A: 785–799

    CAS  Google Scholar 

  • Mattioli TA, Williams JA, Allen W and Robert B (1994) Changes in primary donor hydrogen bonding interactions in mutant reaction centers from Rhodobacter sphaeroides. Identifications of the Vibrational frequencies of all the conjugated carbonyl groups Biochemistry 33: 1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986) Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    CAS  PubMed  Google Scholar 

  • Möenne-Loccoz P, Robert B and Lutz M (1989) A resonance Raman characterization of the primary electron acceptor in Photosystem II. Biochemistry 28: 3641–3645

    Google Scholar 

  • Möenne-Loccoz P, Robert B, Ikegami I and Lutz M (1990) Structure of the primary electron donor in Photosystem I: a resonance Raman study. Biochemistry 29: 4740–4746

    PubMed  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modification of a hydrogen bond between a bound chromophore and the α subunit of the light-harvesting I antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci U.S.A. 91: 7124–7128

    PubMed  CAS  Google Scholar 

  • Palaniappan V, Aldema MA, Frank HA and Bocian DF (1992) Qy excitation resonance Raman scattering from the special pair in Rhodobacter sphaeroides reaction centers. Implication for primary charge separation. Biochemistry 31: 11050–11058

    Article  PubMed  CAS  Google Scholar 

  • Palaniappan V, Martin PC, Chinwat V, Frank HA and Bocian DF (1993) Comprehensive resonance Ramanstudy of photo synthetic reaction centers from Rhodobacter sphaeroides. Implication for pigment structure and pigment-protein interactions. J Am Chem Soc 115: 12035–12049

    Article  CAS  Google Scholar 

  • Robert B (1983) Etude par diffusion Raman de resonance de complexes proteine-pigment antennes des Rhodospirillales. Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Robert B (1990) Resonance Raman studies of bacterial reaction centers. Biochim Biophys Acta 1017: 99–111

    CAS  Google Scholar 

  • Robert B and Lutz M (1985) Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807: 10–23

    CAS  Google Scholar 

  • Robert B and Lutz M (1986) Structure of the primary donor of Rhodopseudomonas sphaeroides: difference resonance Raman spectroscopy of reaction centers. Biochemistry 25: 2303–2309

    Article  CAS  Google Scholar 

  • Robert B and Lutz M (1988) Proteic events following charge separation in the bacterial reaction center: resonance Raman spectroscopy. Biochemistry 27: 5108–5114

    CAS  Google Scholar 

  • Robert B and Möenne-Loccoz P (1989) Un site possible pour ľaccepteur primaire ďélectrons du photosystème I. Compt Rend Acad. Sci. Paris Série III, 308: 407–409

    CAS  Google Scholar 

  • Robert B and Möenne-Loccoz P (1990) Is there a proteic substructure common to all photosynthetic reaction centers? In: Baltcheffski M (ed) Current Research in Photosynthesis, Vol 1, pp 65–68. Kluwer, Dordrecht

    Google Scholar 

  • Robert B, Szponarski W and Lutz M (1985) Resonance Raman studies of transient states in bacterial reaction centers. Springer Proc Phys 4: 220–224

    CAS  Google Scholar 

  • Saito S. and Tasumi M (1983) Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J. Raman Spectrosc 14: 310–321

    CAS  Google Scholar 

  • Saito S, Tasumi M and Eugster CH (1983) Resonance Raman spectra (5800-40 cm−1) of all-trans and 15-cis isomers of β carotene in the solid state and in solution, measurements with various laserlines from ultravioletto red. J Raman Spectrosc 14: 299–309

    CAS  Google Scholar 

  • Shreve AP, Cherepy NJ, Franzen S, Boxer SG and Mathies RA (1991) Rapid-flow resonance Raman spectroscopy of bacterial photosynthetic centers. Proc Natl Acad Sci USA 88: 11207–11211

    PubMed  CAS  Google Scholar 

  • Shuvalov VA, Amesz J and Duysens LNM (1986) Picosecond spectroscopy of isolated membranes of the photosynthetic green sulfur bacterium Prosthecochloris aestuarii upon selective excitation of the primary donor. Biochim Biophys Acta 851: 1–5

    CAS  Google Scholar 

  • Sturgis JN, Cogdell RJ, Jirsakova W, Reiss-Husson F and Robert B (1994) The structure and properties of the bacteriochlorophyll binding site in peripheral light-harvesting complexes from purple bacteria, Biochemistry (submitted)

    Google Scholar 

  • Tasumi M and Fujiwara M (1987) Vibrational spectra of chlorophylls, in: Clark RJH and Hester RE (eds) Advances in Spectroscopy. Vol. 14, Ch 6, pp 407–429. Wiley, London

    Google Scholar 

  • Van Bochove AC, Swarthoff T, Kingma H, Hof RM, van Grondelle R, Duysens LNM and Amesz J (1984) A study of the primary charge separation in green bacteria by means of flash spectroscopy. Biochim Biophys Acta 764: 343–346

    Google Scholar 

  • Van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Otte SCM, Inoue K, Watanabe T and Amesz J (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102: 371–378

    Google Scholar 

  • Wachtweitl J, Farchaus JW, Dos R, Lutz M, Robert B and Mattioli TA (1993) Structure, spectroscopic and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry 32: 12875–12886

    Google Scholar 

  • Zadorozhnyi BA, and Ishchenko IK (1965) Hydrogen bond energies and shifts of the stretching vibration bands of C=O groups. Opt Spectrosc (Engl. transl. 19: 306–308

    Google Scholar 

  • Zhou Q (1989) Relations structure-fonction au sein du centre réactionnel bactérien: études par spectrométrie Raman de resonance, Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Zhou Q, Robert B and Lutz M (1987) Intergeneric structural variability of the primary donor of photosynthetic bacteria: resonance Raman spectroscopy of reaction centers from two Rhodospirillum and Rhodobacter species. Biochim Biophys Acta 890: 368–376

    CAS  Google Scholar 

  • Zhou Q, Robert B and Lutz M (1989) Protein-prosthetic group interactions in bacterial reaction centers: resonance Raman spectroscopy of the reaction center of Rhodopseudomonas viridis. Biochim Biophys Acta 977: 10–18

    CAS  Google Scholar 

  • Zinth W, Knapp EW, Fischer SF, Kaiser W, Deisenhofer J and Michel H (1985) Correlation of structural and spectroscopic properties of a photosynthetic reaction center. Chem Phys Lett 119: 1–4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Robert, B. (1996). Resonance Raman Studies in Photosynthesis — Chlorophyll and Carotenoid Molecules. In: Amesz, J., Hoff, A.J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47960-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47960-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3642-6

  • Online ISBN: 978-0-306-47960-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics