Skip to main content

Abstract

New satellite instruments are currently being designed specifically for fire detection, even though to date the detection of active fires from space has never been an integral part of the design of any in-orbit space mission. Rather, the space-based detection of fires during the last two decades has been exploiting measurements obtained for other objectives. The current fire products have proved to be of great benefit and interest, but their usefulness is not fully understood. Part of the confusion about the utility of these measurements stems from the lack of detailed knowledge about the data and its acquisition. The remote sensing research community has spent considerable time and effort trying to rationalize the usefulness of existing satellite imagery for active fire detection. Unfortunately, uncertainties about instrument capabilities pervades much of this research and the true limits of fire detection from space have not been fully evaluated and understood.

To analyze the active fire detection capability of any instrument, the flow of energy from the source to the instrument and the instrument’s response to that energy must be considered. For this reason, an approach has been developed that models the energy emitted from surface fires, allowing for the fact that fire is itself a variable phenomenon. The energy transmission is then modelled along its path through the atmosphere and through the instrument’s optical system. A fundamental concern is in the estimation of the total surface area that emits the energy which defines a single pixel in the image. Unfortunately, most of the fire detection modelling done to date is based on a misconception about the pixel and its actual size. Rather than using the radiometric footprint size, the instantaneous-field-of-view (IFOV) is used to describe the ‘resolution’ of the instrument. In fact, the radiometric footprint is considerably larger than the IFOV and greatly affects the energy modelling used to estimate the fire detection thresholds of a particular instrument. Based on knowledge of the radiometric footprint, the fire detection capability of AVHRR, DMSP-OLS, and MODIS are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M. E., B.J. Stocks, B.M. Wotton, and R.A. Lanoville, 1998. An example of multifaceted wildland fire research: The International Crown Fire Modelling Experiment, Proc. The Joint III International Conference on Forest Fire Research/14th Conference on Fire and Forest Meteorology, November 16–20, Coimbra, Portugal, 83–112.

    Google Scholar 

  • Baum, B. A., Q. Trepte, 1999. A grouped threshold approach for scene identification in AVHRR imagery, J. Amos. Oceanic. Tech., 16, 793–800.

    Article  Google Scholar 

  • Belward, A. S., and E. Lambin, 1990. Limitations to the identification of spatial structures from AVHRR data, Int. J. of Remote Sens., 11 (5), 921–927.

    Article  Google Scholar 

  • Brass, J. A., L. S. Guild, P. J. Riggan, V. G. Ambrosia, R. N. Lockwood, J. A. Pereira, and R. G. Higgins, 1996. Characterizing Brazilian fires and estimating areas burned by using the Airborne Infrared Disaster Assessment System, Biomass Burning and Global Change, MIT Press, Cambridge, MA, Vol. 2, 561–568.

    Google Scholar 

  • Breaker, L. C., 1990. Estimating and removing sensor-induced correlation from Advanced Very High Resolution Radiometer satellite data, J. Geophys. Res._, 95 (C6), 9701–9711.

    Article  Google Scholar 

  • Cahoon, Jr., D. R., B. J. Stocks, J. S. Levine, W. R. Cofer III, and K. P. O’Neill, 1992a. Seasonal distribution of African savanna fires, Nature, 359 (29), 812–815.

    Article  Google Scholar 

  • Cahoon, Jr., D. R., B. J. Stocks, J. S. Levine, W. R. Cofer III, C. C. Chung, 1992b. Evaluation of a technique for satellite-derived estimation of biomass burning, J. Geophys. Res., 97(D4), 3805–3814.

    Article  Google Scholar 

  • Croft, T. A., 1978. Nighttime Images of the Earth from Space, Scientific American, July, 86–98.

    Google Scholar 

  • Elvidge, C. D., H. W. Kroehl, E. A. Kihn, K. E. Baugh, E. R. Davis, and W. Hao, 1996. Algorithm for the retrieval of fire pixels from DMSP Operational Linescan System data, Biomass Burning and Global Change, MIT Press, Cambridge, MA, Vol. 1, 73–85.

    Google Scholar 

  • Fisher, P., 1997. The pixel: a snare and a delusion, Int. J. Remote Sens., 18 (3), 679–685.

    Article  Google Scholar 

  • Fiasse, S., and P. Ceccato, 1996. A contextual Algorithm for AVHRR fire detection, Int J. of Remote Sens., Vol. 17, pp. 419–424.

    Article  Google Scholar 

  • Gonzalez, R. C., and Paul Wintz, 1987. Digital Image Processing, Second Edition, Addison-Wesley Publishing Company.

    Google Scholar 

  • Lee, T. F., and P. M. Tag, 1990. Improved detection of hotspots using AVHRR 3.7 Urn channel, Bull. Amer. Meteor. Soc., 71 (12), 1722–1730.

    Article  Google Scholar 

  • Justice, CO., and P. Dowty, 1994. IGBP-DIS Satellite Fire Detection Algorithm Workshop Technical Report, IGBP-DIS Working Paper #9, Workshop held in Greenbelt, Maryland, USA, on 25 – 26 February 1993, (NASA/GSFC).

    Google Scholar 

  • Kasischke, E. S., N. H. F. French, P. Harrell, N. L. Christensen, S. L. Ustin, and D. Barry, 1993. Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite data, Remote Sens. Environ., 44, 61–71.

    Article  Google Scholar 

  • Kasischke E. S., N. L. Christensen, and B. J. Stocks, 1995. Fire, global warming, and the carbon balance of boreal forests, Ecol. AppL, 5 (2), 437–451.

    Article  Google Scholar 

  • Kaufman, Y., and C. Justice, 1994. Fire Products, MODIS Algorithm Technical Background Document.

    Google Scholar 

  • Kidwell, K. B., 1991. NOAA Polar Orbiter Data (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11) Users Guide, National Environmental Satellite Data and Information Service, Washington, D.C.

    Google Scholar 

  • King, M. D., W. J. Kaufman, W. P. Menzel, and D. Tanré, 1992. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Transactions on Geoscience and Remote Sensing, 30, 2–27.

    Article  Google Scholar 

  • Kurz, W.A., M. J. APPS, B. J. Stocks, and W. J. A. Volney, 1995. Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests, Biotic Feedbacks in the Global Climate System: Will the Warming Speed the Warming?, G. Woodwell (ed.), Oxford Univ. Press, Oxford, UK., 119–133.

    Google Scholar 

  • Matson, M., G. Stephens, and J. Robinson, 1987. Fire detection using data from the NOAA-N satellites, Int. J. Remote Sens., 8 (7), 961–970.

    Article  Google Scholar 

  • Merrill, D.F. and M. E. Alexander, 1987. Glossary of Fire Management Terms (Fourth Edition), National Research Council No. 26516. Ottawa, Ontario.

    Google Scholar 

  • Setzer, A. W., and J. P. Malingreau, 1996. AVHRR monitoring of vegetation fires in the tropics: Toward the development of a global product, Biomass Burning and Global Change, MIT Press, Cambridge, MA, Vol. 1, 25–39.

    Google Scholar 

  • Sneeuwjagt, R. J., and W. H. Frandsen, 1977. Behavior of experimental grass fires vs. predictions based on Rothermel’s fire model, Can. J. For. Res., 7, 357–367.

    Article  Google Scholar 

  • Smith, W. J., 1966. Modern Optical Engineering, Mcgraw-Hill.

    Google Scholar 

  • Stearns, J. R., M. S. Zahniser, C. E. Kolb, and B. P. Sandford, 1986. Airborne infrared observations and analyses of a large forest fire, Applied Optics, 25 (15), 2554–2562.

    Article  Google Scholar 

  • Steyaert, L. T., F. G. Hall, and T. R. Loveland, 1997. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data, J. Geophys. Res., 102 (D24), 29581–29598.

    Article  Google Scholar 

  • Stocks, B. J. and J. Z. Jin, 1988. The Great China Fire of 1987: Extremes in fire weather and fire behavior, in Proc. 1988 Annual Meeting Northwest Fire Council: Fire Management in a Climate of Change, Victoria, British Columbia, 67–79 Nov. 14–15, 1988.

    Google Scholar 

  • Stocks, B. J. and G. R. Hartley, 1995. Fire behavior in three jack pine fuel complexes, Canadian Forest Service, Great Lakes Stocks Forestry Centre, Sault Ste. Marie, ONT.

    Google Scholar 

  • Stocks, B. J., B. W. Van Wilgen, W. S. W. Trollope, D. J. McRae, F. Weirich, and A.L.F. Potgieter, 1996. Fuels and fire behavior dynamics on large-scale savanna fires in Kruger National Park, South Africa, J. Geophys. Res., 101 (D19), 23541–23550.

    Article  Google Scholar 

  • Stocks, B. J., M. A. Fosberg, T. J. Lynham, L. Mearns, B. M. Wotton, Q. Yang, J-Z Jin, K. Lawrence, G. R. Hartley, J. A. Mason, and D. W. McKenny, 1998. Climate change and forest fire potential in Russian and Canadian boreal forests, Climatic Change, 38 (1), 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cahoon, D.R., Stocks, B.J., Alexander, M.E., Baum, B.A., Goldammer, J.G. (2000). Wildland Fire Detection from Space: Theory and Application. In: Innes, J.L., Beniston, M., Verstraete, M.M. (eds) Biomass Burning and Its Inter-Relationships with the Climate System. Advances in Global Change Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47959-1_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47959-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5375-6

  • Online ISBN: 978-0-306-47959-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics