Skip to main content

Aerobic Anoxygenic Phototrophs

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

During the last 15 years, more than 20 strains of aerobic bacteria which possess bacteriochlorophyll (BChl) a have been found. They are distinguished from typical anaerobic (anoxygenic) phototrophs in that they synthesize BChl only under aerobic conditions and cannot growwithout O2 or other oxidants, even in the light. In some species, photosynthetic activities have been demonstrated. Reaction centers and light-harvesting complexes isolated from some species were shown to be similar to those of typical purple photosynthetic bacteria. The regulatory mechanism of synthesis of pigments and proteins of the photosynthetic apparatus are apparently opposite with respect to O2 tension to that of typical anoxygenic phototrophs. The low content of BChl, unique composition of carotenoids and presence of non-photosynthetic carotenoids in most strains are other marked characteristics of these aerobic bacteria. Phylogenetically, they are not classified into single group. Species so far described are distributed rather widely within the α-subclass of Proteobacteria (purple bacteria) in which most of the purple nonsulfur bacteria as well as many non-photosynthetic bacteria are included. Apparently, these aerobic BChl-containing bacteria represent an evolutionary transient phase from anaerobic phototrophs to aerobic non-phototrophs. However, some characteristic features distinct from anaerobic phototrophs suggest that most of them are in a evolutionary stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arata H, Serikawa Y and Takamiya K (1988) Trimethylamine N-oxide respiration by aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. J Biochem 103: 1011–1015

    CAS  PubMed  Google Scholar 

  • Biel AJ (1986) Control of bacteriochlorophyll accumulation by light in Rhodobacter capsulatus. J Bacteriol 168: 655–659

    CAS  PubMed  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  CAS  PubMed  Google Scholar 

  • Bousfield IJ and Green PN (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole and Hanson) emend. Green and Bousfield 1983. Int J Syst Bacteriol 35: 209

    Google Scholar 

  • Doi M and Shioi Y (1989) Two types of cytochrome cd1 in the aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. Eur J Biochem 184: 521–527

    Article  CAS  PubMed  Google Scholar 

  • Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM and Rao NSS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1. Appl Environ Microbiol 56: 3445–3449

    CAS  PubMed  Google Scholar 

  • Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moor CJ and Stackebrandt E (1993) Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43: 125–134

    CAS  PubMed  Google Scholar 

  • Fukumori Y and Yamanaka T (1987) Cytochrome aa3 from the aerobic photoheterotroph Erythrobacter longus: Purification, and enzymatic and molecular features. J Biochem 102: 777–784

    CAS  PubMed  Google Scholar 

  • Fukumori Y, Nakayama K and Yamanaka T (1985) Cytochrome c oxidase of Pseudomonas AM1: Purification and molecular and enzymatic properties. J Biochem 98: 493–499

    CAS  PubMed  Google Scholar 

  • Gest H (1993) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiol Lett 112: 1–6

    Google Scholar 

  • Harashima K (1989) Carotenoids, quinones and other lipids. In: Harashima, K, Shiba T and Murata N (eds) Aerobic Photosynthetic Bacteria, pp 125–148. Springer-Verlag, Berlin

    Google Scholar 

  • Harashima K and Nakada H (1983) Carotenoids and ubiquinone in aerobically grown cells of an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. Agric Biol Chem 47: 1627–1628

    Google Scholar 

  • Harashima K and Takamiya K (1989) Photosynthesis and photosynthetic apparatus. In: Harashima K, Shiba T and Murata N (eds) Aerobic Photosynthetic Bacteria, pp 39–72. Springer-Verlag, Berlin

    Google Scholar 

  • Harashima K, Shiba T, Totsuka T, Shimidu U and Taga N (1978) Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric Biol Chem 42: 1627–1628

    CAS  Google Scholar 

  • Harashima K, Hayasaki J, Ikari T and Shiba T (1980) O2-stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21: 1283–1294

    CAS  Google Scholar 

  • Harashima K, Nakagawa M and Murata N (1982) Photochemical activity of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol 23: 185–193

    CAS  Google Scholar 

  • Harashima K, Kawazoe K, Yoshida I and Kamata H (1987) Light-stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol 28: 365–374

    CAS  Google Scholar 

  • Hayashi H, Shimada K, Tasumi M, Nozawa T and Hatano M (1986) Circular dichroism and resonance Raman spectra of bacteriochlorophyll-protein complexes from aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. Photobiochem Photobiophys 10: 223–231

    CAS  Google Scholar 

  • Iba K and Takamiya K (1989) Action spectra for inhibition by light of accumulation of bacteriochlorophyll and carotenoid during aerobic growth of photosynthetic bacteria. Plant Cell Physiol 30: 471–477

    CAS  Google Scholar 

  • Iba K, Takamiya K, Toh Y and Nishimura M (1988) Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment-protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. J Bacteriol 170: 1843–1847

    CAS  PubMed  Google Scholar 

  • Kleinig H, Schmitt R, Meister W, Englert G and Thommen H (1979) New C30-Arotenoic acid glucosyl esters from Pseudomonas rhodos. Z Naturforsch 34C: 181–185

    CAS  Google Scholar 

  • Komagata K (1989) Taxonomy of facultative methylotrophs. In: Harashima K, Shiba T and Murata N (eds) Aerobic Photosynthetic Bacteria pp. 25–38 Springer-Verlag, Berlin

    Google Scholar 

  • Liebetanz RL, Hornberger U and Drews G (1991) Organization of the genes encoding for the reaction-center L and M subunits and B870 antenna polypeptides alpha and beta from the aerobic photosynthetic bacterium Erythrobacter species OCH 114. Mol Microbiol 5: 1459–1468

    CAS  PubMed  Google Scholar 

  • Matsuura K and Shimada K (1990) Evolutionary relationships between reaction center complexes with and without cytochrome c subunits in purple bacteria. In: Baltscheffsky M (ed) Current Research in Photosynthesis, pp 193–196. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nagashima KVP, Shimada K and Matsuura K (1993) Phylogenetic analysis of photosynthetic genes of Rhodocyclus gelatinosus: possibility of horizontal gene transfer in purple bacteria. Photosynth Res 36: 185–191

    Article  CAS  Google Scholar 

  • Nishimura Y, Shimadzu M and Iizuka H (1981) Bacteriochlorophyll formation in radiation-resistant Pseudomonas radiora. J Gen Appl Microbiol 27: 427–430

    CAS  Google Scholar 

  • Nishimura Y, Yamanaka S and Iizuka H (1983) Ubiquinone, fatty acid, polar lipid and DNA base composition in Pseudomonas radiora. J Gen Appl Microbiol 29: 421–427

    CAS  Google Scholar 

  • Nishimura Y, Mukasa S Iizuka H and Shimada K (1989) Isolation and characterization of bacteriochlorophyll-protein complexes from an aerobic bacterium, Pseudomonas radiora. Arch Microbiol 152: 1–5

    Article  CAS  Google Scholar 

  • Nishimura Y, Muroga Y, Saito S, Shiba T, Takamiya K and Shioi Y (1994) DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coasts of Australia. J Gen Appl Microbiol 40: 287–296

    CAS  Google Scholar 

  • Noguchi T, Hayashi H, Shimada K, Takaichi S and Tasumi M (1992) In vivo states and function of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynth Res 31: 21–30

    Article  CAS  Google Scholar 

  • Okamura K, Takamiya K and Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh 114. Arch Microbiol 142: 12–17

    Article  CAS  Google Scholar 

  • Okamura K, Mitsumori F, Ito O, Takamiya K and Nishimura M (1986) Photophosphorylation and oxidative phosphorylation in intact cells and chromatophores of an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. J Bacteriol 168: 1142–1146

    CAS  PubMed  Google Scholar 

  • Okamura K, Miyata T, Iwanaga S, Takamiya K and Nishimura M (1987) Complete amino acid sequence of cytochrome c-551 from Erythrobacter species strain OCh 114. J Biochem 101: 957–966

    CAS  PubMed  Google Scholar 

  • Sato K (1978) Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM1. FEBS Lett 85: 207–210

    CAS  PubMed  Google Scholar 

  • Sato K and Shimizu S (1979) The conditions for bacteriochlorophyll formation and the ultrastructure of a methanolutilizing bacterium, Protaminobacter ruber, classified as nonphotosynthetic bacteria. Agric Biol Chem 43: 1669–1675

    CAS  Google Scholar 

  • Sato K, Mizutani T, Hiraoka M and Shimazu S (1982) Carotenoid containing sugar moiety from a facultative methylotroph, Protaminobacter ruber. J Ferment Technol 60: 111–115

    CAS  Google Scholar 

  • Sato K, Ishida K, Shirai M and Shimizu S (1985a) Occurrence and some properties of two types of δ-aminolevulinic acid synthase in a facultative methylotroph, Protaminobacter ruber. Agric Biol Chem 49: 3423–3428

    CAS  Google Scholar 

  • Sato K, Hagiwara K and Shimizu S (1985b) Effect of cultural conditions on tetrapyrrole formation, especially bacteriochlorophyll formation in a facultative methylotroph, Protaminobacter ruber. Agric Biol Chem 49: 1–5

    CAS  Google Scholar 

  • Sato K, Shiba T and Shioi Y (1989) Regulation ofthe biosynthesis of bacteriochlorophyll. In: Harashima K, Shiba T and Murata N (eds) Aerobic Photosynthetic Bacteria, pp 95–124. Springer-Verlag, Berlin

    Google Scholar 

  • Shiba T (1984) Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCh 114. J Gen Appl Microbiol 30: 239–244

    CAS  Google Scholar 

  • Shiba T (1987) O2 regulation of bacteriochlorophyll synthesis in the aerobic bacterium Erythrobacter. Plant Cell Physiol 28: 1313–1320

    CAS  Google Scholar 

  • Shiba T (1989) Overview of the aerobic photosynthetic bacteria. In: Harashima K, Shiba T, Murata N (eds) Aerobic Photosynthetic Bacteria, pp 1–8. Springer-Verlag, Berlin

    Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. System Appl Microbiol 14: 140–14

    Google Scholar 

  • Shiba T and Abe K (1987) An aerobic bacterium containing bacteriochlorophyll-proteins showing absorption maxima of 802, 844 and 862 nm in the near infrared region. Agric Biol Chem 51: 945–946

    CAS  Google Scholar 

  • Shiba T and Simidu U. (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32: 211–217

    Google Scholar 

  • Shiba T, Simidu U and Taga N (1979a) Another aerobic bacterium which contains bacteriochlorophyll a. Bull Jpn Soc Sci Fish 45: 801

    Google Scholar 

  • Shiba T, Simidu U, Taga N (1979b) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45

    CAS  PubMed  Google Scholar 

  • Shiba T, Shioi Y, Takamiya K, Sutton DC and Wilkinson CR (1991) Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coast of Australia. Appl Environ Microbiol 57: 295–300

    CAS  PubMed  Google Scholar 

  • Shimada K, Hayashi H and Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter sp. OCh 114. Arch Microbiol 143: 244–247

    Article  CAS  Google Scholar 

  • Shimada K, Hayashi H, Noguchi T and Tasumi M (1990a) Excitation and emission spectroscopy of membranes and pigment-protein complexes of an aerobic photosynthetic bacterium, Erythrobacter sp. OCh114. Plant Cell Physiol 31: 395–398

    CAS  Google Scholar 

  • Shimada K, Yamazaki I, Tamai N and Mimuro M (1990b) Excitation energy flow in a photosynthetic bacterium lacking B850. Fast energy transfer from B806 to B870 in Erythrobacter sp. strain OCh 114. Biochim Biophys Acta 1016: 266–271

    CAS  Google Scholar 

  • Shimada K, Hirota M, Nishimura Y, Yamazaki I and Mimuro M (1992) Excitation energy flow in Roseobacter denitrificans (Erythrobacter sp. OCh 114) at low temperature. In Murata N (ed) Research in Photosynthesis, pp 137–140. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shioi Y (1986) Growth characteristics and substrate specificity of aerobic photosynthetic bacterium, Erythrobacter sp. (OCh 114). Plant Cell Physiol 27: 567–572

    CAS  Google Scholar 

  • Shioi Y and Doi M (1988) Control of bacteriochlorophyll accumulation by light in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. Arch Biochem Biophys 266: 470–477

    CAS  PubMed  Google Scholar 

  • Shioi Y and Doi M (1990) Aerobic and anaerobic photosynthesis and bacteriochlorophyll formation in Rhodobacter sulfidophilus. In: Baltscheffsky (ed) Current Research in Photosynthesis, pp 853–856. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shioi Y, Doi M, Arata H and Takamiya K (1988) A denitrifying activity in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh 114. Plant Cell Physiol 29: 861–865

    CAS  Google Scholar 

  • Takaichi S, Shimada K and Ishidsu J (1988) Monocyclic crossconjugated carotenal from an aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 27: 3605–3609

    Article  CAS  Google Scholar 

  • Takaichi S, Shimada K and Ishidsu J (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153: 118–122

    Article  CAS  Google Scholar 

  • Takaichi S, Furihata K, Ishidsu J and Shimada K (1991a) Carotenoid sulphates from the aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 30: 3411–3415

    Article  CAS  Google Scholar 

  • Takaichi S, Furihata K and Harashima K (1991b) Light-induced changes of carotenoid pigments in anaerobic cells of the aerobic photosynthetic bacterium, Roseobacter denitrificans (Erythrobacter species OCh 114): reduction ofspheroidenone to 3,4-dihydrospheroidenone. Arch Microbiol 155: 473–476

    CAS  Google Scholar 

  • Takamiya K (1989) Cytochromes and respiratory systems. In: Harashima K, Shiba T, Murata N (eds) Aerobic Photosynthetic Bacteria, pp 73–90. Springer-Verlag, Berlin

    Google Scholar 

  • Takamiya K and Okamura K (1984) Photochemical activities and photosynthetic ATP formation in membrane preparation from a facultative methy lotroph, Protaminobacter ruber strain NR-1. Arch Microbiol 140: 21–26

    Article  CAS  Google Scholar 

  • Takamiya K, Iba K and Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. Biochim Biophys Acta 890:127–133

    CAS  Google Scholar 

  • Takaraiya K, Arata H, Shioi Y and Doi M (1988) Restoration of the optimal redox state for the photosynthetic electron transfer system by auxiliary oxidants in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. Biochim Biophys Acta 935: 26–33

    Google Scholar 

  • Takamiya K, Shioi Y, Shimada H and Arata H (1992) Inhibition of accumulation of bacteriochlorophyll and carotenoids by blue light in an aerobic photosynthetic bacterium, Roseobacter denitrificans, during anaerobic respiration. Plant Cell Physiol 33: 1171–1174

    CAS  Google Scholar 

  • Takamiya K, Shioi Y, Morita M, Arata H, Shimizu M and Doi M (1993) Some properties and occurrence of cytochrome c-552 in the aerobic photosynthetic bacterium Roseobacter denitrificans. Arch Microbiol 159: 51–56

    Article  CAS  PubMed  Google Scholar 

  • Takemoto J and Kao MYCH (1977) Effects of incident light levels on photosynthetic membrane polypeptide composition and assembly in Rhodopseudomonas sphaeroides. J Bacteriol 129: 1102–1109

    CAS  PubMed  Google Scholar 

  • Urakami T and Komagata K (1984) Protomonas, a new genus of facultative methylotrophic bacteria. Int J Syst Bacteriol 34: 188–201

    CAS  Google Scholar 

  • Urakami T and Komagata K (1986) Occurrence of isoprenoid compounds in Gram-negative methanol-, methane-and methylamine-utilizing bacteria. J Gen Appl Microbiol 32: 317–341

    CAS  Google Scholar 

  • Urakami T and Komagata K (1988) Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids, and the occurrence of squalene and sterols in species of Rhodospirillaceae genera and Erythrobacter longus. J Gen Appl Microbiol 34: 67–84

    CAS  Google Scholar 

  • Wakao N, Shiba T, Hiraishi A, Ito M and Sakurai Y (1993) Distribution of bacteriochlorophyll a in species of the genus Acidiphilium. Current Microbiol 27: 277–279

    CAS  Google Scholar 

  • Wakao N, Nagasawa N, Matsuura T, Matsukura H, Matsumoto T, Hiraishi A, Sakurai Y and Shiota H (1994) Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 40: 143–159

    CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster B J, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH and Fox GE (1984) The phylogeny of purple bacteria: The alpha subdivision. System Appl Microbiol 5: 315–326

    CAS  Google Scholar 

  • Yurkov VV and Gorlenko VM (1990) Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a. Mikrobiologia 59: 120–126

    CAS  Google Scholar 

  • Yurkov VV and Gorlenko VM (1991) A new genus of fresh water aerobic bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Mikrobiologia 60: 902–90

    CAS  Google Scholar 

  • Yurkov VV and Gorlenko VM (1992) New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a. Mikrobiologia 61: 248–255

    CAS  Google Scholar 

  • Yurkov VV and Van Gemerden H (1993a) Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159: 84–89

    Article  CAS  Google Scholar 

  • Yurkov VV and Van Gemerden H (1993b) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat. Neth J Sea Res 31: 57–62

    Google Scholar 

  • Yurkov VV, Mityushina LL and Gorlenko VM (1991) Ultrastructure of the aerobic bacterium Erythrobacter sibiricus, which contains bacteriochlorophyll a. Mikrobiologia 60:339–344

    Google Scholar 

  • Yurkov VV, Gorlenko VM and Kompantseva EI (1992) A new type of freshwater aerobic orange-colored bacterium Erythromicrobium gen. nov., containing bacteriochlorophyll a. Mikrobiologia 61: 256–260

    CAS  Google Scholar 

  • Yurkov V, Gaďon N and Drews (1993) The major part of polar carotenoids of the aerobic bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 is not bound to the bacteriochlorophyll a-complexes of the photosynthetic apparatus. Arch Microbiol 160: 372–376

    Article  CAS  Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gaďon N, Gorlenko VM, Kompantseva EI and Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophylus gen. nov., sp. nov.,Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427–434

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Shimada, K. (1995). Aerobic Anoxygenic Phototrophs. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics