Skip to main content

Storage Products in Purple and Green Sulfur Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Synthesis and accumulation of storage materials occurs in phototrophic sulfur bacteria under virtually all environmental conditions. After summarizing the general characteristics of the different storage products and the maximum contents at which they are found in different organisms, attention is paid to the environmental conditions which affect their accumulation. Although the specific contents are usually high when resources are present in excess, deposition also occurs under conditions of limitation, thus suggesting a strategy which maximizes long term benefit in a fluctuating environment, rather than instantaneous growth. The physiological role of storage products is illustrated through several laboratory experiments, some were fluctuations play a major role, and later on, in a section which describes field situations which actually confirm several of the previous experimental results. The chapter ends with a section which emphasizes the physical effects of the deposition of storage products specially in organisms with a planktonic way of life. Changes in cell size and density derived from the presence of storage structures are discussed, specially in relation to their impact on buoyancy regulation and sinking rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper R, Lundgren DG, Marchessault RH, and Cote WA (1963) Properties of poly-β-hydroxybutyrate. I. General considerations concerning natural occurring polymer. Biopolymers 1: 545–556

    Article  CAS  Google Scholar 

  • Bachofen R, Israng R, Del Don C, Hanselmann K, and Tonolla M (1991) Chemo-and phototactic behavior of phototrophic bacteria under natural conditions in Lago di Cadagno, a meromictic alpine lake. Abstracts. VII Intl Symp Phototrop Prokary, p 158

    Google Scholar 

  • Barham PJ (1990) Physical properties of poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate). In: Dawes EA (ed) Novel Biodegradable Microbial Polymers, pp 81–96. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Barnard GN and Sanders JKM (1989) The poly-βhydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem 264: 3286–3291

    CAS  PubMed  Google Scholar 

  • Beeftink HH and Van Gemerden H (1979) Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch Microbiol 121: 161–167

    Article  CAS  Google Scholar 

  • Cohen-Bazire G (1963) Some observations on the organization of the photosynthetic apparatus in purple and green bacteria. In: Gest H, San Pietro A, and Vernon LP (eds) Bacterial Photosynthesis, pp 89–110 The Antioch Press, Yellow Springs, Ohio

    Google Scholar 

  • Cole JA and Hughes DE (1965) The metabolism of polyphosphates in Chlorobium thiosulfatophilum. J Gen Microbiol 38: 65–72

    PubMed  Google Scholar 

  • Dawes EA (1992) Storage polymers in prokaryotes.In: Mohan S, Daw C, and Cole JA (eds) Prokaryotic Structure and Function: A New Perspective, pp 81–122. Cambridge University Press, Cambridge

    Google Scholar 

  • Dawes EA and Senior PJ (1973) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10: 135–266

    CAS  PubMed  Google Scholar 

  • De Wit R (1989) Interactions between phototrophic bacteria in marine sediments. PhD Thesis. University of Groningen. The Netherlands

    Google Scholar 

  • De Wit R and Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45: 117–126

    Google Scholar 

  • De Wit R and Van Gemerden H (1990a) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76

    Google Scholar 

  • De Wit R and Van Gemerden H (1990b) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154: 459–464

    Article  Google Scholar 

  • Del Don C, Hanselmann KW and Bachofen R (1991) Metabolic responses of Chromatiaceae to diurnal cycles in a natural lake habitat. Abstracts. VII Intl. Symp Phototrop Prokary p 106

    Google Scholar 

  • Dunlop WF and Robards AW (1973) Ultrastructural study of poly-β-hydroxybutyrate granules from Bacillus cereus. J Bacteriol 114: 1271–1280

    CAS  PubMed  Google Scholar 

  • Eimhjellen KE, Steensland H and Traetteberg J (1967) A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Microbiol 59: 82–92

    CAS  Google Scholar 

  • Ellar D, Lundgren DG, Okamura K and Marchessault RH (1968) Morphology of poly-β-hydroxybutyrate granules. J Mol Biol 35: 489–502

    CAS  PubMed  Google Scholar 

  • Esteve I, Montesinos E, Mitchell J G and Guerrero R (1990) A quantitative ultrastructural study of Chromatium minus in the bacterial layer of Lake Cisó (Spain). Arch Microbiol 153: 316–323

    Article  Google Scholar 

  • Ferguson SJ, Gadian DG and Kell DB (1979) Evidence from 31 P nuclear magnetic resonance that polyphosphate synthesis is a slip reaction in Paracoccus denitrificans. Biochem Soc Trans 7: 176–179

    CAS  PubMed  Google Scholar 

  • Griebel R, Smith Z and Mcrrick JM (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7: 3676–3681

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R, Mas J and Pedrós-Alió C (1984) Buoyant density changes due to intracellular content of sulfur in Chromatium warmingii and Chromatium vinosum. Arch Microbiol 137: 350–356

    Article  CAS  Google Scholar 

  • Guerrero R, Montesinos E, Pedrós-Alió C, Esteve I, Mas J, Van Gemerden H, Hofman PAG and Bakker JF (1985a) Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30: 919–931

    CAS  Google Scholar 

  • Guerrero R, Pedrós-Alió C, Schmidt TM and Mas J (1985b) A survey of buoyant density of microorganisms in pure cultures and natural samples. Microbiologia 1: 53–65

    CAS  PubMed  Google Scholar 

  • Hageage Jr. GJ, Eanes ED and Gherna RL (1970) X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol 101: 464–469

    CAS  PubMed  Google Scholar 

  • Halvorson HO (1990) Some possible roles of polyphosphate in microorganisms. In: Dawes EA (ed) Novel Biodegradable Microbial Polymers, pp 205–211. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hara F, Akazawa T and Kojima K (1973) Glycogen biosynthesis in Chromatium strain D I. Characterization of glycogen. Plant and Cell Physiol 14: 737–745

    CAS  Google Scholar 

  • Hendley DD (1955) Endogenous fermentation in Thiorhodaceae. J Bacteriol 70: 625–634

    CAS  PubMed  Google Scholar 

  • Hofman PAG, Veldhuis MJW and Van Gemerden H (1985) Ecological significance of acetate assimilation by Chlorobium phaeobacteroides. FEMS Microbiol Ecol 31: 271–278

    Article  Google Scholar 

  • Hughes DE, Conti SF and Fuller RC (1963) Inorganic polyphosphate metabolism in Chlorobium thiosulfatophilum. J Bactcriol 85: 577–584

    CAS  Google Scholar 

  • Kawaguchi Y and Doi Y (1990) Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol Lett 79: 151–156

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc London. 298: 499–528

    CAS  Google Scholar 

  • Kromkamp JC and Mur LR (1984) Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in cellular carbohydrate content. FEMS Microbiol Lett 25: 105–109

    Article  CAS  Google Scholar 

  • Kulaev IS (1979) The Biochemistry of Inorganic Polyphosphates. John Wiley and Sons, New York

    Google Scholar 

  • Kulaev IS (1990) The physiological role of inorganic polyphosphates in microorganisms: Some evolutionary aspects. In: Dawes EA (ed) Novel Biodegradable Microbial Polymers, pp 223–233. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW and Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155: 415–421

    CAS  Google Scholar 

  • Mas J and Van Gemerden H (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146: 362–369

    Article  CAS  Google Scholar 

  • Mas J and Van Gemerden H (1992) Phosphate-limited growth of Chromatium vinosum in continuous culture. Arch Microbiol 157: 135–140

    CAS  Google Scholar 

  • Mas J, Pedrós-Alió C and Guerrero R (1985) Mathematical model for determining the effects of intracytoplasmic inclusions on volume and density of microorganisms. J Bacteriol 164: 749–756

    CAS  PubMed  Google Scholar 

  • Mas J, Pedrós-Alió C and Guerrero R (1989) Variations in cell size and buoyant density of Escherichia coli K12 during glycogen accumulation. FEMS Microbiol Lett 57: 231–236

    Article  Google Scholar 

  • Mas-Castellà J (1991) Acumulación de poli-β-hidroxialcanoatos por bacterias. Distribución en la Naturaleza y Biotecnología. PhD Thesis. University of Barcelona. Spain

    Google Scholar 

  • Matsuyama M (1991) Buoyant density of Chromatium sp.: Its effect on the blooming at an upper boundary of the H2S layer in Lake Kaiike. Jap J Limnol 52: 57–63

    CAS  Google Scholar 

  • Merrick JM (1978) Metabolism of reserve materials. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 199–219. Plenum Press, New York

    Google Scholar 

  • Montesinos E (1987) Change in size of Chromatium minus cells in relation to growth rate, sulfur content, and photosynthetic activity: A comparison of pure cultures and field populations. Appl Environ Microbiol 53: 864–871

    CAS  PubMed  Google Scholar 

  • Nicolay K, Hellingwerf KJ, Kaptein R and Konings WN (1982) Carbon-13 nuclear magnetic resonance studies of acetate metabolism in intact cells of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 720: 250–25

    CAS  PubMed  Google Scholar 

  • Nicolson GL and Schmidt GL (1971) Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol 105: 1142–1148

    CAS  PubMed  Google Scholar 

  • Okamura K and Marchessault RH (1967) X-ray structure of poly-β-hydroxybutyrate In: Ramachandran BM (ed) Conformation of Biopolymers, Vol 2, pp 709–720. Academic Press, New York

    Google Scholar 

  • Ostrovsky DN, Sepetov NF, Reshetnyak VI and Sibel Dina LA (1980) Study of the localization of polyphosphates in cells of micro-organisms by high-resolution phosphorus-31 NMR at 145.78 MHz. Biokhimiya 45: 517–525

    Google Scholar 

  • Overmann J, Lehmann S, and Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodyction phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157: 29–37

    Article  CAS  Google Scholar 

  • Pedrós-Alió C and Guerrero R. (1993). Microbial ecology in Lake Cisó. Adv Microb Ecol 13: 155–209

    Google Scholar 

  • Pedrós-Alió C, Mas J and Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143: 178–184

    Article  Google Scholar 

  • Pedrós-Alió C, Mas J, Gasol JM and Guerrero R (1989) Sinking speeds of free-living phototrophic bacteria determined with covered and uncovered traps. J Plankton Res 11: 887–905

    Google Scholar 

  • Pfennig N and Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1635–1709. Williams & Wilkins, Baltimore

    Google Scholar 

  • Remsen CC (1978) Comparative cellular architecture of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 31–60. Plenum Press, New York

    Google Scholar 

  • Reusch RN and Sadoff HL (1988) Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85: 4176–4180

    CAS  PubMed  Google Scholar 

  • Schaechter M, Maaloe O and Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol, 19: 592–606

    CAS  PubMed  Google Scholar 

  • Schaub BEM and Van Gemerden H (1994) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1. FEMS Microbiol Ecol 13: 185–196

    CAS  Google Scholar 

  • Schmidt GL and Kamen MD (1970) Variable cellular composition of Chromatium in growing cultures. Arch Mikrobiol 73: 1–18

    Article  CAS  PubMed  Google Scholar 

  • Schmidt GL, Nicolson GL and Kamen MD (1971) Composition of the sulfur particle of Chromatium vinosum strain D. J Bacteriol 105: 1137–1141

    CAS  PubMed  Google Scholar 

  • Shehata TE and Marr AG (1971) Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol 107: 210–216

    CAS  PubMed  Google Scholar 

  • Shively JM (1974) Inclusion bodies of prokaryotes. Ann Rev Microbiol 28: 167–187

    CAS  Google Scholar 

  • Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens Jr. SE and Strohl WR (1989) Functional inclusion bodies in prokaryotic cells. Int Rev Cytol 113: 35–100

    Google Scholar 

  • Sirevåg R and Ormerod JG (1977) Synthesis, storage and degradation of polyglucose in Chlorobium thiosulfatophilum. Arch Microbiol 111: 239–244

    Article  PubMed  Google Scholar 

  • Stanier RY, Doudoroff M, Kunisawa R and Contopoulou R (1959) The role of organic substrates in bacterial photosynthesis. Proc Natl Acad Sci USA 45: 1246–1260

    CAS  Google Scholar 

  • Steudel R, Holdt G, Visscher PT and Van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153: 432–437

    Article  CAS  Google Scholar 

  • Steudel R (1989) On the nature of the ‘elemental sulfur’ (So) produced by sulfur-oxidizing bacteria—a model for So globules. In: Schlegel HG and Bowien B (eds) Biology of Autotrophic Bacteria, pp 289–303. Science Tech Publ, Madison, and Springer, Berlin

    Google Scholar 

  • Thomas RH and Walsby AE (1985) Buoyancy regulation in a strain of Microcystis. J Gen Microbiol 131: 799–809

    Google Scholar 

  • Trüper HG (1964a) Sulphur metabolism in Thiorhodaceae. II. Stoichiometric relationship of CO2 fixation to oxidation of hydrogen sulphide and intracellular sulphur in Chromatium okenii. Antonie van Leeuwenhoek 30: 385–394

    Google Scholar 

  • Trüper HG (1964b) CO2-Fixierung und Intermediärstoffwechsel bei Chromatium okenii Perty. Arch Mikrobiol 49: 23–50

    Article  Google Scholar 

  • Trüper HG and Hathaway JC (1967) Orthorombic sulphur formed by photosynthetic sulphur bacteria. Nature 215: 435–436

    PubMed  Google Scholar 

  • Trüper HG and Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225–238

    Google Scholar 

  • Utkilen HC, Skulberg OM and Walsby AE (1985) Buoyancy regulation and chromatic adaptation in planktonic Oscillatoria species: alternative strategies for optimizing light absorption in stratified lakes. Arch Hydrobiol 104: 407–417

    Google Scholar 

  • Van Gemerden H (1968a) Growth measurements of Chromatium cultures. Arch Mikrobiol 64: 103–110

    PubMed  Google Scholar 

  • Van Gemerden H (1968b) On the ATP generation by Chromatium in darkness. Arch Mikrobiol 64: 118–124

    PubMed  Google Scholar 

  • Van Gemerden H (1974) Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microb Ecol 1: 104–119

    Google Scholar 

  • Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139: 289–294

    Article  Google Scholar 

  • Van Gemerden H (1986) Production of elemental sulfur by green and purple sulfur bacteria. Arch Microbiol 146: 52–56

    Article  Google Scholar 

  • Van Gemerden H and Beeftink HH (1978) Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures. Arch Microbiol 119: 135–143

    Article  Google Scholar 

  • Van Gemerden H, Montesinos E, Mas J and Guerrero R (1985) Diel cycle of metabolism of phototrophic purple sulfur bacteria in lake Cisó (Spain). Limnol Oceanogr 30: 932–943

    Google Scholar 

  • Van Gemerden H, Visscher PT and Mas J (1990) Environmental control of sulfur deposition in anoxygenic purple and green sulfur bacteria. In: Dawes EA (ed) Novel Biodegradable Microbial Polymers, pp 247–262. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Van Niel CB (1936) On the metabolism of Thiorhodaceae. Arch Mikrobiol 7: 323–358

    Article  Google Scholar 

  • Visscher PT and Van Gemerden H (1991) Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett 81: 247–250

    Article  CAS  Google Scholar 

  • Visscher PT, Nijburg JW and Van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81

    Article  CAS  Google Scholar 

  • Weast RC (1986–1987) Handbook of Chemistry and Physics. 67th edition. CRC Press Inc. Boca Raton. Florida

    Google Scholar 

  • Williamson DH and Wilkinson JF (1958) The isolation and estimation of poly-β-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol, 19: 198–209

    CAS  PubMed  Google Scholar 

  • Winogradsky S (1887) Ueber Schwefelbacterien. Botanische Zeitung. 45: 489–507, 513–523, 529–539, 545–559, 569–576, 585–594, 606–610

    Google Scholar 

  • Winogradsky S (1945) Microbiologie du sol. Masson et cie editeurs. Paris

    Google Scholar 

  • Zaitseva GN, Gulikova OM and Kondraťeva EN (1965) Biochemical changes in the cells of Chromatium minutissimum under photoautotrophic and photoheterotrophic conditions of growth. Mikrobiologiya 34: 577–583

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mas, J., Van Gemerden, H. (1995). Storage Products in Purple and Green Sulfur Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_45

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics