Skip to main content

Aerobic and Anaerobic Electron Transport Chains in Anoxygenic Phototrophic Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Aerobic and anaerobic electron transport chains of facultative phototrophs have been of increasing interest because of their diverse organization of redox carriers and their adaptive regulatory mechanisms of gene expression. During the last decade, studies on the biochemistry of bacterial redox complexes such as NADH-deh and bc1 from Rhodobacter species, and Cyt c-oxidases of aa3 type from Rb. sphaeroides and Chloroflexus aurantiacus, have revealed the presence of fewer subunits than corresponding eukaryotic enzymes. This evidence has provided new insights into the biochemical evolution of respiration and also useful indications on structure/function relationships. Recent advances in studying the aerobic and anaerobic respiratory pathways of facultative phototrophs have taken advantage of modern molecular genetics. In particular, the role of soluble cytochrome c2, until recent years considered to be essential for electron transport in the two closely related species Rb, capsulatus and Rb. sphaeroides, has been better defined. Indeed, it is now clear that two different classes of alternative electron carriers (soluble Cyt iso-c2 and membrane-bound Cyt cy) can operate between the membrane-bound redox complexes instead of, or along with, the Cyt c2. The presence of multiple electron carriers between redox complexes suggests that Cyt cy-like components might be more widely spread among those photosynthetic bacteria where photooxidizable soluble c-type hemes are not readily detected, e.g. Cf. aurantiacus. The outstanding metabolic versatility of Rb. capsulatus made also possible the use of mutants defective in redox carriers of aerobic respiration for the analysis of anaerobic electron transport pathways. Thus, if the role of Cyt c2 in anaerobic light-driven electron flow has partially been reshuffled, Cyt c2 seems to play a key role in the dark anaerobic pathways leading to NO2 and N2O reduction. The use of Cyt c-deficient mutants also demonstrated that the ubiquinol/Cyt c oxidoreductase is not required for growth with DMSO or TMAO as electron acceptors. These dark anaerobic processes, however, cannot sustain a ‘consistent’ cell growth in the presence of non fermentable substrates; thus, they must be regarded as advantageous metabolic systems facilitating anaerobic growth in the dark and/or in the light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albracht SPJ, Kalman ML and Slater EC (1983) Magnetic interaction of nickel (III) and the iron-sulfur cluster in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 724: 309–316

    CAS  Google Scholar 

  • Adams MWW and Hall DO (1979) Properties of the solubilized membrane-bound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Arch Biochem Biophys 195: 288–299

    Article  CAS  PubMed  Google Scholar 

  • Amesz J and Knaff DB (1988) Molecular mechanisms of bacterial photosynthesis. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms, pp 113–178. John Wiley & Sons, New York

    Google Scholar 

  • Anraku Y (1988) Bacterial electron transport chains. Ann Rev Biochem 57: 101–132

    CAS  PubMed  Google Scholar 

  • Anraku Y and Gennis RB (1987) The aerobic respiratory chain of Escherichia coli. Trends Biochem Sci 12: 262–266

    Article  CAS  Google Scholar 

  • Averill BA and Tiedje JM (1982) The chemical mechanism of microbial denitrification. FEBS Lett 138: 8–12

    Article  CAS  PubMed  Google Scholar 

  • Baccarini-Melandri A, Zannoni D and Melandri BA (1973) Energy transduction in photosynthetic bacteria. VI. Respiratory sites and energy conservation in membranes from dark-grown cells of Rhodopseudomonas capsulata. Biochim Biophys Acta 314: 298–313

    CAS  PubMed  Google Scholar 

  • Baccarini-Melandri A and Zannoni D (1978) Photosynthetic and respiratory flow in the dual functional membrane of facultative photosynthetic bacteria. J Bioenerg Biomembr 10: 109–138

    Google Scholar 

  • Ballard AL, McEwan AG, Richardson DJ, Jackson JB and Ferguson SJ (1990) Rhodobacter capsulatus strain BK5 possesses a membrane bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. Arch Microbiol 154: 301–303

    Article  CAS  Google Scholar 

  • Bartsch RG (1978) Cytochromes. In: Clayton RK, Sistrom WR (eds) The Photosynthetic Bacteria, pp 249–279 Plenum Press, New York

    Google Scholar 

  • Bauld J and Brock TD (1973) Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Arch Mikrobiol 92: 267–284

    Article  Google Scholar 

  • Beatty T and Gest H (1981) Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol 129: 335–340

    Article  CAS  Google Scholar 

  • Bell LC, Richardson DJ and Ferguson SJ (1992) Identification of nitric oxide reductase activity in Rhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochrome c2 and the bc1 complex. J Gen Microbiol 138: 437–443

    CAS  PubMed  Google Scholar 

  • Bose SK and Gest H (1962) Hydrogenase and light-stimulated electron transfer reactions in photosynthetic bacteria. Nature 195: 1168–1171

    CAS  PubMed  Google Scholar 

  • Bott M, Ritz D and Henneke H (1991) The Bradyrhizobium japonicum cycM gene encodes a membrane anchored homolog of mitochondrial c. J Bacteriol 173: 6766–6772

    CAS  PubMed  Google Scholar 

  • Brimblecombe P and Shooter D (1984) Photooxidation of demethylsulphide in aqueous solutions. Marine Chem 19: 343–353

    Google Scholar 

  • Byrne MD and Nicholas DJD (1987) A membrane bound dissimilatory nitrate reductase from Rhodobacter sphaeroides f. sp. denitrificans. Biochim Biophys Acta 915: 120–124

    CAS  Google Scholar 

  • Caffrey M, Davidson E, Cusanovich M and Daldal F (1992) Mutants of Rhodobacter capsulatus cytochrome c2. Arch Biochem Biophys 292: 419–426

    Article  CAS  PubMed  Google Scholar 

  • Carr GJ and Ferguson SJ (1990) The nitric oxide reductase of Paracoccus denitrificans. Biochem J 269: 423–429

    CAS  PubMed  Google Scholar 

  • Carrithers RP, Yoch DC and Arnon DI (1977) Isolation and characterization of bound iron sulfur proteins from bacterial photosynthetic membranes. II. Succinate dehydrogenase from Rhodospirillum rubrum chromatophores. J Biol Chem 252: 7461–7467

    Google Scholar 

  • Cauvin B, Colbeau A and Vignais P (1991) The hydrogenase structural operon in Rhodobacter capsulatus contain a third gene, hupM, necessary for the formation of a physiological competent hydrogenase. Mol Microbiol 5: 2519–2527

    CAS  PubMed  Google Scholar 

  • Chepuri V, Lemiuex LJ, Au D C-T and Gennis RB (1990) The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinone oxidase of Escherichia coli and the aa3 type family of cytochrome c oxidases. J biol Chem 265: 11185–11192

    CAS  PubMed  Google Scholar 

  • Colbeau A and Vignais PM (1981) The membrane-bound hydrogenase of Rhodopseudomonas capsulata. Stability and catalytic properties. Biochim Biophys Acta 662: 271–284

    CAS  Google Scholar 

  • Colbeau A and Vignais PM (1983) The membrane-bound hydrogenase of Rhodopseudomonas capsulata is inducible and contains nickel. Biochim Biophys Acta 748: 128–138

    CAS  Google Scholar 

  • Colbeau A, Kelley BC and Vignais PM (1980) Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J Bacteriol 144: 141–148

    CAS  PubMed  Google Scholar 

  • Colbeau A, Chabert J and Vignais PM (1983) Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata. Biochim Biophys Acta 748: 116–127

    CAS  Google Scholar 

  • Cook ND and Cammack R (1984) Purification and characterization of the rotenone-insensitive NADH dehydrogenase of mitochondria from Arum maculatum. Eur J Biochem 141: 573–577

    Article  CAS  PubMed  Google Scholar 

  • Cox JC, Madigan MT, Favinger JL and Gest H (1980) Redox mechanisms in ‘oxidant dependent’ hexose fermentation by Rhodopseudomonas capsulata. Arch Biochem Biophys 204: 10–17

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA and Crofts AR (1982) Electron and proton transport. In: Govindjee (ed) Photosynthesis. Energy Conversion by Plants and Bacteria. Vol 1, pp 387–467. Academic Press, New York

    Google Scholar 

  • Craske AL and Ferguson SJ (1986) The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties. Eur J Biochem 158: 429–436

    Article  CAS  PubMed  Google Scholar 

  • Daldal F (1988a) Genetic approaches to study bacterial Cytbc1 complexes. In: Stevens SE and Bryant DA (eds), Light Energy Transduction in Photosynthesis: Higher Plants and Bacterial Models pp 259–273, American Society of Plant Physiologists, Washington D.C

    Google Scholar 

  • Daldal F (1988b) Cytochrome c2-independent respiratory growth of Rhodobacter capsulatus. J Bacteriol 170: 2388–2391

    CAS  PubMed  Google Scholar 

  • Daldal F, Cheng S, Applebaum J, Davidson E and Prince RC (1986) Cytochrome c2 is not essential for photosynthetic growth of Rhodopseudomonas capsulata. Proc Natl Acad Sci 83: 2012–2016

    CAS  Google Scholar 

  • Daldal F, Tokito MK, Davidson E and Faham M (1989) Mutations conferring resistance to quinol oxidation (Qz)-inhibitors of the Cyt bc1 complex of Rhodobacter capsulatus. EMBO J 8: 3951–3961

    CAS  PubMed  Google Scholar 

  • Davidson E and Daldal F (1987) Primary structure of the bc1 complex of Rhodobacter capsulatus. Nucleotide sequence of the pet operon encoding the Rieske, Cyt b and Cyt c1 apoproteins. J Mol Biol 195: 13–24

    CAS  PubMed  Google Scholar 

  • de Vries S and Grivel LA (1988) Purification and characterization of a rotenone-insensitive NADH-Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem 176: 377–384

    Article  PubMed  Google Scholar 

  • Donohue TJ, Mc Ewan AG and Kaplan S (1986) Cloning, DNA sequence and expression of the Rhodopseudomonas sphaeroides Cyt c2 gene. J Bacteriol 168: 962–972

    CAS  PubMed  Google Scholar 

  • Donohue TJ, Kiley PJ and Kaplan S (1988) The puf operon region of Rhodobacter sphaeroides. Photosynth Res 19: 39–61

    Article  CAS  Google Scholar 

  • Drews G (1985) Structure and functional organization of light harvesting complexes and photochemical reaction centers in membranes ofphototrophic bacteria. Microbiol Rev 49: 59–70

    CAS  PubMed  Google Scholar 

  • Drews G (1986) Adaptation of the bacterial photosynthetic apparatus to different light intensities. Trends Biochem Sci 11: 255–257

    Article  Google Scholar 

  • Drews G and Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol 22: 1–92

    CAS  PubMed  Google Scholar 

  • Dry IB, Moore AL, Day DA and Wiskich JT (1989) Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys 273: 148–157

    Article  CAS  PubMed  Google Scholar 

  • Dupuis A (1992) Identification of two genes of Rhodobacter capsulatus coding for proteins homologous to the ND1 and 23 kDa subunits of the mitochondrial Complex I. FEBS Lett 301: 215–218

    Article  CAS  PubMed  Google Scholar 

  • Dupuis A, Issartel JP, Lunardi J and Peinnequin A (1993) Study of the type I NADH-CoQ reductase of the purple bacterium Rhodobacter capsulatus. Biol Chem Hoppe-Seyler 374: 817

    Google Scholar 

  • Dutton PL (1986) Energy transduction in anoxygenic photosynthesis. Encycl Plant Physiol New Ser 19: 197–237

    Google Scholar 

  • Dutton PL and Leigh JS (1973) Electron spin resonance characterization of Chromatium D hemes. Non-heme irons and components involved in primary photochemistry. Biochim Biophys Acta 314: 178–190

    CAS  PubMed  Google Scholar 

  • Favinger J, Stadtwald R and Gest H (1989) Rhodospirillum centenum, sp.nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek 55: 291–296

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SJ (1988) Periplasmic electron transport reactions. In: Anthony C (eds) Bacterial Energy Transduction, pp 151–182. Academic Press, London

    Google Scholar 

  • Ferguson SJ, Jackson JB and McEwan AG (1987) Anaerobic respiration in the Rhodospirillaceae: Characterization of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Revs 46: 117–143

    CAS  Google Scholar 

  • Fitch J, Meyer T, Cusanovich M, Tollin G, van Beeumen J, Rott M and Donohue TJ (1989) Expression of a Cyt c2 isozyme restores photosynthetic growth of Rhodobacter sphaeroides mutants lacking the Cyt c2 gene. Arch Biochem Biophys 271: 502–507

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T, Weidner U, Nehls U, Fecke W, Schneider R and Weiss H (1993) Attempts to define distinct parts of NADH:ubiquinone oxidoreductase (Complex I). J Bioenerg Biomembr 25: 331–337

    Article  CAS  PubMed  Google Scholar 

  • Gaul DF and Knaff DB (1983) The presence of cytochrome c1 in the purple sulfur bacterium Chromatium vinosum. FEBS Lett 162: 69–75

    Article  CAS  Google Scholar 

  • Gennis RB, Casey RP, Azzi A and Ludwig B (1982) Purification and characterization of the Cyt c oxidase from Rhodopseudomonas sphaeroides. Eur J Biochem 125: 189–195

    Article  CAS  PubMed  Google Scholar 

  • Gennis RB, Barquera B, Hacker B, van Doren SR, Arnaud S, Crofts AR, Davidson E, Gray KA and Daldal F (1993) The bc1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. J Bioenerg Biomembr 25: 195–209

    Article  CAS  PubMed  Google Scholar 

  • Gest H and Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a ‘new’ form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Article  CAS  Google Scholar 

  • GimĂ©nez-Gallego G, del Valle-TascĂ²n S and Ramìrez JM (1976) A possible physiological function of the oxygen photoreducing system of Rhodospirillum rubrum. Arch Microbiol 109: 119–125

    Article  PubMed  Google Scholar 

  • Gooley P, Caffrey M, Cusanovich M and McKenzie N (1990) Assignment of the 1H and 15N NMR spectra of the Rb. capsulatus ferrocytochrome c2. Biochemistry 29: 2278–2290

    Article  CAS  PubMed  Google Scholar 

  • Goretski J and Hallocher TC (1988) Trapping of nitric oxide produced during denitrification by extracellular haemoglobin. J Biol Chem 263: 2316–2323

    CAS  PubMed  Google Scholar 

  • Gray GO, Gaul DF and Knaff D (1983) Partial purification and characterization of two soluble c-type cytochromes from Chromatium vinosum. Arch Biochem Biophys 222: 78–86

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Grooms M, Myllykallio H, Moomaw C, Sloughter C and Daldal F (1994) Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center. Biochemistry 33: 3120–3127

    CAS  PubMed  Google Scholar 

  • Gromet-Elhanan Z (1969) Inhibitors of photophosphorylation and photoreduction by chromatophores from Rhodospirillum rubrum. Arch Biochem Biophys 131: 299–315

    CAS  PubMed  Google Scholar 

  • Haddock B A and Jones CW (1977) Bacterial respiration. Bacteriol Rev 41: 47–99

    CAS  PubMed  Google Scholar 

  • Hamamoto T, Carrasco N, Matsushita K, Kaback HR and Mental M (1985) Direct measurement of the electrogenic activity of O-type cytochrome oxidase from Escherichia coli reconstituted into planar lipid bilayers. Proc Natl Acad Sci USA 82: 2570–2573

    CAS  PubMed  Google Scholar 

  • Hamilton WA (1988) Energy transduction in anaerobic bacteria. In: Anthony C (eds) Bacterial Energy Transduction, pp 84–1149. Academic Press, London

    Google Scholar 

  • Hanlon SP, Holt RA and McEwan AG (1992) The 44-kDa c-type cytochrome induced in Rhodobacter capsulatus during growth with dimethyl sulphoxideas an electron acceptoris a cytochrome c peroxidase. FEMS Microbiol Lett 97: 283–288

    Article  CAS  Google Scholar 

  • Hansen TA and van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Microbiol 86: 49–56

    CAS  Google Scholar 

  • Hashwa FA and TrĂ¼per HG (1978) Viable phototrophic sulfur bacteria from the Black Sea bottom. Helgol Wiss Meeresunters 31: 249–253

    Article  Google Scholar 

  • Hauska G (1986) Composition and structure of cytochrome and bc1 and bc6f complexes. Encycl Plant Physiol New Ser 19: 494–507

    Google Scholar 

  • Hatefi Y, Davis KA, Baltscheffsky H, Baltscheffsky M and Johansson BC (1972) Isolation and properties of succinate dehydrogenase from Rhodospirillum rubrum. Arch Biochem Biophys 152: 613–618

    Article  CAS  PubMed  Google Scholar 

  • Heiss B, Frunzke K and Zumft WG (1989) Formation of the N-N bond from nitric oxide by a membrane bound cytochrome bc complex of nitrate respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol 171: 3288–3297

    CAS  PubMed  Google Scholar 

  • Hiraishi A (1988) Fumarate reduction systems in members of the family Rhodospirillaceae with different quinone types. Arch Microbiol 150: 56–60

    Article  CAS  Google Scholar 

  • Hiraishi A, Hoshino Y and Satoh T (1991) Rhodoferax fermentans gen. no., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘Rhodocyclus gelatinosus-like’ group. Arch Microbiol 155: 330–336

    Article  Google Scholar 

  • Hochkoeppler A, Venturoli G and Zannoni D (1993) The electron transport chain of Rhodoferax fermentans. Biol Chem Hoppe-Seyler 374: 831

    Google Scholar 

  • Hochkoeppler A, Ciurli S, Venturoli g and Zannoni D (1995a) The high potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans is competent in photosynthetic electron transfer. FEBS Lett 357: 70–74

    Article  CAS  PubMed  Google Scholar 

  • Hochkoeppler A, Jenney FE, Lang SE, Zannoni D and Daldal F (1995b) Membrane-associated cytochrome cy of Rhodobacter capsulatus is an electron carrier from cytochrome bc1 complex to the cytochrome c oxidase during respiration. J Bacteriol 177: 608–613

    CAS  PubMed  Google Scholar 

  • Hosler JP, Ftter J, Tecklenburg MMJ, Espe M, Lerma C and Ferguson-Miller S (1992) Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. J Biol Chem 34: 24264–24272

    Google Scholar 

  • Hosler JP, Ferguson-Miller S, Calhoun MW, Thomas JW, Hill J, Lemieux L, Ma J, Georgiou C, Fetter J, Shapleigh J, Tecklenburg MJ, Babcock GT and Gennis RB (1993) Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr 25: 121–136

    Article  CAS  PubMed  Google Scholar 

  • HĂ¼dig H and Drews G (1982a) Characterization of a b-type cytochrome c oxidase of Rhodopseudomonas capsulata, FEBS Lett 146: 389–392

    Article  Google Scholar 

  • HĂ¼dig H and Drews G (1982b) Isolation of a b-type cytochrome oxidase from membranes of the phototrophic bacterium Rhodopseudomonas capsulata. Z Naturforsch 37: 193–198

    Google Scholar 

  • HĂ¼dig H and Drews G (1983) Characterization of a new membrane bound cytochrome c of Rhodopseudomonas capsulata. FEBS Lett 152: 251–255

    Article  PubMed  Google Scholar 

  • HĂ¼dig H and Drews G (1984) Reconstitution of b-type cytochrome oxidase from Rhodopseudomonas capsulata in liposomes and turnover studies of proton translocation. Biochim Biophys Acta 765: 171–177

    Google Scholar 

  • HĂ¼dig H, Kaufmann N and Drews G (1986) Respiratory deficient mutants of Rhodopseudomonas capsulata. Arch Microbiol 145: 378–385

    Article  Google Scholar 

  • Imhoff J (1984) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25: 85–89

    Article  CAS  Google Scholar 

  • Ingledew JW and Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Revs 48: 22–271

    Google Scholar 

  • Itoh M, Mizukami S, Matsuura K and Satoh T (1989) Involvement of cytochrome bc1 complex and cytochrome c2 in the electron transfer pathway for NO reduction in a photodenitrifier Rhodobacter sphaeroides f. sp. denitrificans. FEBS Lett 24: 81–84

    Google Scholar 

  • Jackson JB (1988) Bacterial photosynthesis. In: Anthony C (ed) Bacterial Energy Transduction pp 317–375 Academic Press, London

    Google Scholar 

  • Jenney FE and Daldal F (1993) A novel membrane associated c-type cytochrome, Cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12: 1283–1293

    CAS  PubMed  Google Scholar 

  • Jones CW and Vernon LP (1969) NAD photoreduction in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 180: 149–161

    CAS  PubMed  Google Scholar 

  • Jones M, Mc Ewan A and Jackson B (1990) The role of c-type cytochromes in the photosynthetic electron transport pathway of Rhodobacter capsulatus. Biochim Biophys Acta 1019: 59–66

    CAS  PubMed  Google Scholar 

  • Jones OTG and Plewis KM (1974) Reconstitution of light-dependent electron transport in membranes from a bacteriochlorophyll-less mutant of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 357: 204–214

    CAS  PubMed  Google Scholar 

  • Jones OTG and Saunders VA (1972) Energy-linked electron transfer reactions in Rhodopseudomonas viridis. Biochim Biophys Acta 275: 427–436

    CAS  PubMed  Google Scholar 

  • Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135

    Google Scholar 

  • Kämpf C, Wynn RM, Shaw RW and Knaff DB (1987) The electron transfer chain of aerobically grown Rhodopseudomonas viridis. Biochim Biophys Acta 894: 228–238

    Google Scholar 

  • Keister D and Yike JJ (1967) Energy-linked reactions in photosynthetic bacteria. I. Succinate-linked ATP-driven NAD+ reduction by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys 121:415–422

    CAS  PubMed  Google Scholar 

  • Kelley BC, Jouanneau Y and Vignais PM (1979) Nitrogenase activity in Rhodopseudomonas sulfidophila. Arch Microbiol 122: 145–152

    Article  CAS  Google Scholar 

  • Kelly DJ, Richardson DJ, Ferguson SJ and Jackson JB (1988) Isolation of transposon Tn5 insertion mutants of Rhodobacter capsulatus unable to reduce trimethylamine-N-oxide and dimethylsulphoxide. Arch Microbiol 150: 138–144

    Article  CAS  Google Scholar 

  • Kiley P and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52: 50–69

    CAS  PubMed  Google Scholar 

  • King MT and Drews G (1973) The function and localization of ubiquinone in the NADH and succinate oxidase systems of Rhodopseudomonas palustris. Biochim Biophys Acta 305: 230–248

    CAS  PubMed  Google Scholar 

  • King MT and Drews G (1976) Isolation and partial purification of the cytochrome c oxidase from Rhodopseudomonas palustris. Eur J Biochem 68: 5–12

    Article  CAS  PubMed  Google Scholar 

  • King GF, Richardson DJ, Jackson JB and Ferguson SJ (1987) Dimethylsulphoxide and trimethylamine-N-oxide as bacterial electron acceptors: Use of NMR to assay and characterise the reductase system in Rhodobacter capsulatus. Arch Microbiol 149: 47–51

    Article  CAS  Google Scholar 

  • Klemme JH (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Z Naturforsch B24: 67–76

    Google Scholar 

  • Klemme JH, Chyla I and Preuss M (1980) Dissimilatory nitrate reduction by strains of the facultative phototrophic bacterium Rhodopseudomonas palustris. FEMS Microbiol Lett 9: 137–140

    Article  CAS  Google Scholar 

  • Knaff DB (1978) Reducing potentials and the pathway of NAD reduction. In: Clayton RK and Sistron WR (eds), The Photosynthetic Bacteria, pp 629–640. Plenum Press, New York

    Google Scholar 

  • Knaff DB, Whestone R and Carr JW (1980) The role of soluble cytochrome c551 in cyclic electron flow driven active transport in Chromatium vinosum. Biochim Biophys Acta 590: 50–58

    CAS  PubMed  Google Scholar 

  • Kovacs KL, Bagyinka CS and Serebryakova LT (1983) Distribution and orientation of hydrogenase in various photosynthetic bacteria. Current Microbiol 9: 215–218

    CAS  Google Scholar 

  • La Monica RF and Marrs BL (1976) The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata. Biochim Biophys Acta 423: 431–439

    PubMed  Google Scholar 

  • Larsen RW, Pan L-P, Musser SM, Li Z and Chan SI (1992) Could CuB be the site of redox linkage in cytochrome c oxidase?. Proc Natl Acad Sci USA 89: 723–727

    CAS  PubMed  Google Scholar 

  • Lavorel J, Richaud P and Vermeglio A (1989) Interaction of photosynthesis and respiration in Rhodospirillaceae: evidence of two functionally distinct bc1 complex fractions. Biochim Biophys Acta 973: 290–295

    CAS  Google Scholar 

  • Lissolo T, Colbeau A, Magnani P, Kovacs KL and Vignais PM (1993) The membrane-bound (Ni-Fe)hydrogenase of the photosynthetic bacteria Rhodobacter capsulatus and Thiocapsa roseopersicina. Biol Chem Hoppe-Seyler 374: 825

    Google Scholar 

  • Madigan MT and Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by oxidant-dependent sugar fermentation. Arch Microbiol 117: 119–122

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT and Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darknesswith H2 as the energy source. J Bacteriol 137: 524–530

    CAS  PubMed  Google Scholar 

  • Madigan MT, Petersen SR and Brock TD (1974) Nutritional studies on Chloroflexus, a filamentous, photosynthetic, gliding bacterium. Arch Microbiol 100: 97–103

    Article  CAS  Google Scholar 

  • Madigan MT, Cox JC and Gest H (1980) Physiology of dark fermentative growth of Rhodopseudomonas capsulata. J Bacteriol 142: 908–915

    CAS  PubMed  Google Scholar 

  • Malkin R, Chain RK, Kraichoke S and Knaff DB (1981) Studies on the function of the membrane-bound iron-sulfur centers of the photosynthetic bacterium Chromatium vinosum. Biochim Biophys Acta 637: 88–95

    CAS  Google Scholar 

  • Marrs BL and Gest H (1973) Genetic mutations affecting the respiratory electron transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 114: 1045–1051

    CAS  PubMed  Google Scholar 

  • Matsushita K, Patel L and Kaback HR (1984) Cytochrome O-type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry 23: 4703–4714

    Article  CAS  PubMed  Google Scholar 

  • McEwan AG, George CL, Ferguson SJ and Jackson JB (1982) A nitrate reductase activity in Rhodopseudomonas capsulatus linked to electron transfer and generation of a membrane potential. FEBS Lett 150: 277–280

    Article  CAS  Google Scholar 

  • McEwan AG, Ferguson SJ and Jackson JB (1983) Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata. Arch Microbiol 136: 300–305

    Article  CAS  PubMed  Google Scholar 

  • McEwan AG, Jackson JB and Ferguson SJ (1984) Rationalization of properties of nitrate reductases in Rhodopseudomonas capsulata. Arch Microbiol 137: 344–349

    Article  CAS  Google Scholar 

  • McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB and Ferguson SJ (1985a) Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J Bacteriol 164: 823–830

    CAS  PubMed  Google Scholar 

  • McEwan AG, Wetzstein HG, Jackson JB and Ferguson SJ (1985b) Periplasmic location of the terminal reductase in trimethylamine-N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulata. Biochim Biophys Acta 806: 410–417

    CAS  Google Scholar 

  • McEwan AG, Wetstein HG, Meyer O, Jackson JB and Ferguson SJ (1987) The periplasmic nitrate reductase of Rhodobacter capsulatus; purification, characterization and distinction from a single reductase from trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch Microbiol 147: 340–345

    Article  CAS  Google Scholar 

  • McEwan AG, Richardson DJ, Hudig H, Ferguson SJ and Jackson BJ (1989) Identification of cytochromes involved in electron transport to trimethylamine N-oxide/dimethylsulphoxide reductase in Rhodobacter capsulatus. Biochim Biophys Acta 973: 308–314

    CAS  Google Scholar 

  • McEwan AG, Ferguson SJ and Jackson JB (1991) Purification and properties of dimethylsulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme. Biochem J 274: 305–307

    CAS  PubMed  Google Scholar 

  • Meyer J, Kelley BC and Vignais PM (1978) Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochemie 60: 245–360

    CAS  Google Scholar 

  • Melandri BA, Zannoni D, De Santis A and Casadio R (1982) Hydrogen photometabolism in Rhodopseudomonas capsulata. In: Hall DO and Palz W (eds), Photochemical, Photoelectrochemical and Photobiological Processes, Vol 1-D, pp 164–164. D Riedel Publ, Dordrecht

    Google Scholar 

  • Melandri BA, Zannoni D, De Santis A and Casadio R (1983) Hydrogen photometabolism in Rhodopseudomonas capsulata. In: Hall DO and Palz W (eds), Photochemical, Photoelectrochemical and Photobiological Processes, Vol 2-D, pp 208–213. D Riedel Publ, Dordrecht

    Google Scholar 

  • Michalski W and Nicholas DJD (1985) Molecular characterization of a copper containing nitrite reductase from Rhodopseudomonas sphaeroides f. sp. denitrificans. Biochim Biophys Acta 828: 130–137

    CAS  Google Scholar 

  • Michels PA and Haddock BA (1980) Cytochrome c deficient mutants of Rhodopseudomonas capsulata. EBEC Reports 1: 77–78

    Google Scholar 

  • Minghetti KC, Goswitz VC, Gabriel NE, Hill JJ, Barassi C, Georgiou CD, Chan SI and Gennis RB (1992) Modified, large-scale purification of the cytochrome o complex (bo-type oxidase) of Escherichia coli yields a two heme/one copper terminal oxidase with high specific activity. Biochemistry 31: 6917–6924

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Rasmusson AG and Fredlund KM (1993) NAD(P)H-Ubiquinone oxidoreductases in plant mitochondria. J Bioenerg Biomembr 25: 377–384

    Article  PubMed  Google Scholar 

  • Moore AL, Dry IB and Wiskich JT (1988) Measurement of the redox state of the ubiquinone pool in plant mitochondria. FEBS Lett 235: 76–80

    Article  CAS  Google Scholar 

  • Moore AL, Day DA, Dry IB and Wiskich JT (1990) Regulation of electron transport activity in plant mitochondria by the redox poise of the quinol pool. In: Lenaz G, Barnabei O, Rabbi A and Battino M (eds), Highlights in Ubiquinone Research, pp 170–174. Taylor and Francis, London

    Google Scholar 

  • Oelze J and Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265: 209–239

    CAS  PubMed  Google Scholar 

  • Oelze J and Drews G (1981) Membranes of phototrophic bacteria. In: Ghosh BK (eds), Organization of prokaryotic membranes, Vol 2, pp 131–195. CRC Press, Boca Raton

    Google Scholar 

  • Ohnishi T and Salerno JC (1982) Iron sulfur clusters in the mitochondrial electron transport chain. In: Spiro TG (ed), Iron-Sulfur Proteins, Vol 4, pp 285–327. John Wiley and Sons, Chichester

    Google Scholar 

  • Ormerod JG and Gest H (1962) Symposium on metabolism of inorganic compounds. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Rev 26: 51–66

    CAS  PubMed  Google Scholar 

  • Paul F, Colbcau A and Vignais PM (1979) Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. FEBS Lett 106: 29–33

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria pp 3–18 Plenum Press, New York

    Google Scholar 

  • Pierson BK (1985) Cytochromes in Chloroflexus aurantiacus grown with and without oxygen. Arch Microbiol 143: 260–265.

    Article  CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1974) A phototrophic, gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24

    CAS  PubMed  Google Scholar 

  • Poole RK (1983) Bacterial cytochrome oxidases. A structural and functionally diverse group of electron transfer proteins. Biochim Biophys Acta 726: 205–243

    CAS  PubMed  Google Scholar 

  • Presig O, Anthamatten D, Thony-Meyer L, Beck C, Zufferey R and Henneke H (1993) Genetic and preliminary biochemical characterization of a novel member of the bacterial heme/copper cytochrome oxidase superfamily. Biol Chem Hoppe-Seyler 374: 821

    Google Scholar 

  • Prince RC (1990) Bacterial photosynthesis: from photons to Δ:8 In: Krulwich TA (ed), The Bacteria, Vol XII, pp 111–149. Academic Press, New York

    Google Scholar 

  • Prince RC and Daldal F (1987) Physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus. Biochim Biophys Acta 894: 370–378

    CAS  PubMed  Google Scholar 

  • Prince RC and Dutton PL (1978) Protonation and the reducing potential of the primary electron acceptor. In: Clayton RK and Sistrom WR (eds), The Photosynthetic Bacteria, pp 439–453. Plenum Press, New York

    Google Scholar 

  • Prince RC and Ingledew JW (1977) Thermodynamic resolution of the iron-sulfur centers of the succinic dehydrogenase of Rhodopseudomonas sphaeroides. Arch Biochem Biophys 178: 303–307

    PubMed  Google Scholar 

  • Prince RC, Baccarini-Melandri A, Crofts AR, Hauska GA and Melandri BA (1975) Asymmetry of an energy transducing membrane. Location of cytochrome c2 in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, Biochim Biophys Acta 387: 212–227

    CAS  PubMed  Google Scholar 

  • Prince RC, Davidson E, Haith C and Daldal F (1986) Photosynthetic electron transfer in the absence of Cyt c2 in Rhodopseudomonas capsulata: Cyt c2 is not essential for electron flow from the bc1 complex to the photochemical reaction center. Biochemistry 25: 5208–5212

    Article  CAS  Google Scholar 

  • Puustinen A and Wikström M (1991) The heme groups of the cytochrome O from Escherichia coli. Proc Natl Acad Sci USA 88: 6122–6126

    CAS  PubMed  Google Scholar 

  • Puustinen A, Finel M, Haltia T, Gennis RB and Wikström M (1991) Properties of the two terminal oxidases of E. coli. Biochemistry 30: 3936–3942

    Article  CAS  PubMed  Google Scholar 

  • Ramìrez-Ponce MP, Ramìrez JM and Gimènez-Gallego G (1980) Rhodoquinone as a constituent of the dark electron-transfer system of Rhodospirillum rubrum. FEBS Lett 119: 137–140

    Google Scholar 

  • Rende A, Slemer F and Conrad R (1989) Microbial production and uptake of nitric oxide in soil. FEMS Microbiol Ecol 62: 221–230

    Google Scholar 

  • Richardson DJ, Kelly DJ, Jackson, Ferguson SJ and Alef K (1986) Inhibitory effects of myxothiazol and 2-n-heptyl-4-hydroxy quinoline-N-oxide on the auxiliary electron transport pathways of Rhodobacter capsulatus. Arch Microbiol 146: 159–165

    Article  CAS  Google Scholar 

  • Richardson DJ, McEwan AG, Jackson JB and Ferguson SJ (1989) Electron transport pathways to nitrous oxide in Rhodobacter species. Eur J Biochem 185: 659–669

    Article  CAS  PubMed  Google Scholar 

  • Richardson DJ, McEwan AG, Page MD, Jackson JB and Ferguson SJ (1990) The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3 reductase of Rhodobacter capsulatus and resolution of a soluble NO3−-reductase-c6tochrome-c552 redox complex. Eur J Biochem 194: 263–270

    Article  CAS  PubMed  Google Scholar 

  • Richardson DJ, Bell LC, McEwan AG, Jackson JB and Ferguson SJ (1991) Cytochrome C2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and act as an electron donor to the reductase in vivo. Correlation with photoinhibition studies. Eur J Biochem 199: 677–683

    Article  CAS  PubMed  Google Scholar 

  • Richaud R, Marrs BL and Vermeglio A (1986) Two modes of interaction between photosynthetic and respiratory chains in whole cells of Rhodopseudomonas capsulata. Biochim Biophys Acta 850: 256–263

    CAS  Google Scholar 

  • Robertson DE, Davidson E, Prince RC, Van der Berg WH, Marrs BL and Dutton PL (1986) Discrete catalytic sites for quinone in the ubiquinol-cytochrome c oxidoreductase of Rhodo-pseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation. J Biol Chem 261: 584–591

    CAS  PubMed  Google Scholar 

  • Rott MA and Donohue TJ (1990) Rhodobacter sphaeroides spd mutations allow Cyt c2-independent photosynthetic growth. J Bacteriol 172: 1954–1961

    CAS  PubMed  Google Scholar 

  • Rugolo M and Zannoni D (1992) Oxidation of external NAD(P)H by Jerusalem artichoke (Helianthus tuberosus) mitochondria. Plant Physiol 99: 1037–1043

    CAS  Google Scholar 

  • Sasaki T, Motokawa Y and Kikuchi G (1970) Occurrence of both a-type and o-type cytochromes as the functional terminal oxidases in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 197: 284–291

    CAS  PubMed  Google Scholar 

  • Satoh T (1981) Soluble dissimilatory nitrate reductase containing cytochrome c from a photodenitrifier Rhodopseudomonas sphaeroides f. sp. denitrificans. Plant Cell Physiol 22: 423–432

    Google Scholar 

  • Saunders V A and Jones OTG (1974) Properties of the cytochrome a-like material developed in the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochim Biophys Acta 333: 439–445

    CAS  PubMed  Google Scholar 

  • Saunders VA and Jones OTG (1975) Detection of two further b-type cytochromes in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 396: 220–228

    CAS  PubMed  Google Scholar 

  • Sawada E and Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductases in a denitrifying phototrophic bacterium Rhodopseudomonas sphaeroides f. sp. denitrificans. Plant Cell Physiol 24: 501–508

    Google Scholar 

  • Sawada E, Satoh T and Kitamura H (1978) Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. Plant Cell Physiol 19: 1339–1351

    CAS  Google Scholar 

  • Schrattenholz AS, Nawroth T and Dose K (1989) Isolation and partial characterization of a cytochrome-o complex from chromatophores of the photosynthetic bacterium Rhodospirillum rubrum FR1. Eur J Biochem 181: 689–694

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE and Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149: 181–190

    CAS  PubMed  Google Scholar 

  • Shapleigh JP and Payne WJ (1985) Nitric oxide dependent proton translocation in various denitrifiers. J Bacteriol 163: 837–840

    CAS  PubMed  Google Scholar 

  • Shill DA and Wood PM (1984) A role for cytochrome c2 in Rhodopseudomonas viridis. Biochim Biophys Acta 764: 1–7

    CAS  Google Scholar 

  • Seifert E and Pfennig N (1979) Chemotrophic growth of Rhodopseudomonas species with H2 and chemotrophic utilization of methanol and formate. Arch Microbiol 122:177–182

    Google Scholar 

  • Sled’ VD, Friedrich T, Leif H, Weiss H, Meinhardt SW, Fukumori Y, Calhoun MW, Gennis RB and Ohnishi T (1993) Bacterial NADH-quinone oxidoreductases: iron-sulfur clusters and related problems. J Bioenerg Biomembr 25: 347–356

    CAS  Google Scholar 

  • Strekas T, Antanaitis BC and Krasna AI (1980) Characterization and stability of hydrogenase from Chromatium. Biochim Biophys Acta 616: 1–9

    CAS  PubMed  Google Scholar 

  • Takakuwa S and Wall JD (1981) Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 12: 359–363

    Article  CAS  Google Scholar 

  • Takamiya K (1983) Properties of the cytochrome c oxidase activity of Cyt b561 from photoanaerobically grown Rhodopseudomonas sphaeroides. Plant Cell Physiol 24:1457–1462

    CAS  Google Scholar 

  • Takamiya K and Tanaka H (1983) Isolation and purification of Cyt b561 from a photosynthetic bacterium Rhodopseudomonas sphaeroides. Plant Cell Physiol 24: 1449–1455

    CAS  Google Scholar 

  • Takamiya K I, Doi M and Okimatsu H (1982) Isolation and purification of a ubiquinone-Cyt hc1 complex from a photosynthetic bacterium, Rhodopseudomonas sphaeroides. Plant Cell Physiol 23: 987–997

    CAS  Google Scholar 

  • Trost JT, McManus JD, Freeman JC, Ramakrishna BL and Blankenship RE (1988) Auracyanin, a blue copper protein from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry 27: 7858–7863

    Article  CAS  Google Scholar 

  • Uffen RL and Wolfe RS (1979) Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol 104: 462–472

    Google Scholar 

  • Urata K and Satoh T (1984) Evidence for cytochrome bc1 complex involvement in nitrite reduction in a photodenitrifier, Rhodopseudomonas sphaeroides f. sp. denitrificans. FEBS Lett 172: 205–208

    Article  CAS  Google Scholar 

  • van der Oost J, Pappalainen P, Musacchio A, Warne A, Lemieux L, Rumbley J, Gennis RB, Aasa R, Pascher T, Malmstrom BG and Saraste M (1992) Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome O quinol complex. EMBO J 11: 3209–3217

    PubMed  Google Scholar 

  • van Grondelle R, Duysens LNM and van der Wal HN (1976) Function of three cytochromes in photosynthesis of whole cells of Rhodospirillum rubrum as studied by flash spectroscopy. Biochim Biophys Acta 441: 169–187

    Google Scholar 

  • van Grondelle R, Duysens LNM and van der Wal HN (1977) Function and properties of a soluble c-type cytochrome c-551 in secondary photosynthetic electron transport in whole cells of Chromatium vinosum as studied with flash spectroscopy. Biochim Biophys Acta 461: 188–201

    CAS  PubMed  Google Scholar 

  • van Heerikhuizen H, Albracht SPJ, Slater EC and van Rheenen PS (1981) Purification and some properties of the soluble hydrogenase from Chromatium vinosum. Biochim Biophys Acta 657: 26–39

    PubMed  Google Scholar 

  • Varela J and Ramires JM (1990) Oxygen-linked electron transfer and energy conversion in Rhodospirillum rubrum. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 443–452. Plenum Press, New York

    Google Scholar 

  • Venturoli G, Fenoll C and Zannoni D (1987) On the mechanism of respiratory and photosynthetic electron transfer in Rhodospirillum rubrum. Biochim Biophys Acta 892: 172–184

    CAS  Google Scholar 

  • Venturoli G, Fernandez-Velasco JG, Crofts AR and Melandri BA (1986) Demonstration of a collisional interaction of ubiquinol with the ubiquirol-Cyt c2 oxidoreductase complex in chromatophores from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 851: 340–352

    CAS  Google Scholar 

  • Venturoli G, Feick, Trotta M and Zannoni D (1990) Thermodynamic and kinetic features of the redox carriers operating in the photosynthetic electron transport of Chloroflexus aurantiacus. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 425–432. Plenum Press, New York

    Google Scholar 

  • Vignais PM, Colbeau A, Willison JC and Jouanneau Y (1985) Hydrogenase, nitrogenase and hydrogen metabolism in the photosynthetic bacteria. Adv Microbial Physiol 26: 155–234

    CAS  Google Scholar 

  • Wale FR and Jones OTG (1970) The cytochrome system of heterotrophically grown Rhodopseudomonas sphaeroides. Biochim Biophys Acta 223: 146–157

    Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats, Physiological Ecology of Benthic Microbial Communities pp 3–15 Amer Soc Microbiol Washington D.C.

    Google Scholar 

  • Weiss H and Friedrich T (1991) Redox-linked proton translocation by NADH-ubiquinone reductase (complex I). J Bioenerg Biomembr 23: 743–754

    Article  CAS  PubMed  Google Scholar 

  • Wood PM (1983) Why do c-type cytochromes exists?. FEBS Lett 164:223–226

    Article  CAS  PubMed  Google Scholar 

  • Wood PM (1984) Bacterial proteins with CO-binding b-or c-type haem functions and absorption spectroscopy. Biochim Biophys Acta 768: 293–317

    CAS  PubMed  Google Scholar 

  • Wynn RM, Kämpf C, Gaul DF, Choi W-K, Shaw RW and Knaff DB (1985) The membrane bound electron transfer components of aerobically grown Chromatium vinosum. Biochim Biophys Acta 808: 85–93

    CAS  Google Scholar 

  • Wynn RM, Gaul DF, Choi WK, Shaw RW and Knaff DB (1986) Isolation of cytochrome bc1 complexes from the photosynthetic bacteria Rhodopseudomonas viridis and Rhodospirillum rubrum. Photosynth Res 9: 181–195

    Article  CAS  Google Scholar 

  • Wynn RM, Redlinger TE, Foster JM, Blankenship RE, Fuller RC, Shaw RW and Knaff DB (1987) Electron transport chains of phototrophically and chemotrophically grown Chloroflexus aurantiacus. Biochim Biophys Acta 981: 216–226

    Google Scholar 

  • Yagi T (1991) Bacterial NADH-quinone oxidoreductases. J Bioenerg Biomembr 23: 211–225

    Article  CAS  PubMed  Google Scholar 

  • Yagi T (1993) The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta 1141: 1–17

    CAS  PubMed  Google Scholar 

  • Yen HC and Marrs BL (1977) Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulphoxide. Arch Biochem Biophys 181: 411–418

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Urata K and Satoh T (1984) Redox properties of membrane bound b-type cytochromes and a soluble c-type cytochrome of nitrate reductase in a photodenitrifier Rhodopseudomonas sphaeroides f. sp. denitrificans. J Biochem (Tokyo) 95:1535–1541

    CAS  Google Scholar 

  • Zafiriou OC, Hanley QS and Snyder G (1989) Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrate reduction by Pseudomonas perfectormarina. J Biol Chem 264: 5694–5699

    CAS  PubMed  Google Scholar 

  • Zannoni D (1982) ATP synthesis coupled to light-dependent non-cyclic electron flow in chromatophores of Rhodopseudomonas capsulata. Biochim Biophys Acta 680: 1–7

    CAS  Google Scholar 

  • Zannoni D (1985) Mefloquine: an antimalarial drug interacting with the b/c region of bacterial respiratory chains. FEBS Lett 183: 340–344

    Article  CAS  Google Scholar 

  • Zannoni D (1986) The branched respiratory chain of heterotrophically dark-grown Chloroflexus aurantiacus. FEBS Lett 198: 119–124

    Article  CAS  Google Scholar 

  • Zannoni D and Baccarini-Melandri A (1980) Respiratory electron flow in facultative photosynthetic bacteria. In: Knowles KJ (ed), Diversity of Bacterial Respiratory Systems, Vol II, ppl 83–202. CRC Press, Boca Raton

    Google Scholar 

  • Zannoni D and Daldal F (1993) The role of c type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasma membrane of facultative phototrophs. Arch Microbiol Minirevs Ser (in press)

    Google Scholar 

  • Zannoni D and Fuller RC (1988) Functional and spectral characterization of the respiratory chain of Chloroflexus aurantiacus grown in the dark under oxygen-saturated conditions. Arch Microbiol 150: 368–373

    Article  CAS  Google Scholar 

  • Zannoni D and Ingledew JW (1983a) Rhodopseudomonas capsulata respiratory dehydrogenase mutants: an electron paramagnetic resonance study. FEMS Microbiol Lett 17: 331–334

    Article  CAS  Google Scholar 

  • Zannoni D and Ingledew JW (1983b) A functional characterization of the membrane bound iron sulfur centres of Rhodopseudomonas capsulata. Arch Microbiol 135: 176–181

    Article  CAS  Google Scholar 

  • Zannoni D and Ingledew JW (1985) A thermodynamic analysis of the plasma membrane electron transport components in phototrophically grown cells of Chloroflexus aurantiacus. An optical and electron paramagnetic resonance study. FEBS Lett 193: 93–98

    Article  CAS  Google Scholar 

  • Zannoni D and Marrs BL (1981) Redox chain and energy transduction in chromatophores from Rhodopseudomonas capsulata cells grown anaerobically in the dark on glucose and dimethylsulphoxide. Biochim Biophys Acta 637: 96–106

    CAS  Google Scholar 

  • Zannoni D and Melandri BA (1985) Function of ubiquinone in bacteria. In: Lenaz G (eds) Coenzyme Q. Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone, pp 235–256 John Wiley and Sons Ltd, Chichester

    Google Scholar 

  • Zannoni D and Moore AL (1990) Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 271: 123–127

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D and Venturoli G (1988) The mechanism of photosynthetic electron transport and energy transduction by membrane fragments from Chloroflexus aurantiacus. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Truper HG (eds) Green Photosynthetic Bacteria, pp 135–143. Plenum Press, New York

    Google Scholar 

  • Zannoni D, Baccarini-Melandri A, Melandri BA, Evans EH, Prince RC and Crofts AR (1974) The nature of the cytochrome c oxidase in the respiratory chain of Rhodopseudomonas capsulata. FEBS Lett 48: 152–155

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D, Melandri BA and Baccarini-Melandri A (1976a) Composition and function of the branched oxidase system in wild type and respiratory mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta 423: 413–430

    CAS  PubMed  Google Scholar 

  • Zannoni D, Melandri BA and Baccarini-Melandri A (1976b) Further resolution of the cytochrome of b type and the nature of the CO-sensitive oxidase present in the respiratory chain of Rhodopseudomonas capsulata. Biochim Biophys Acta 449: 386–400

    CAS  PubMed  Google Scholar 

  • Zannoni D, Melandri BA and Baccarini-Melandri A (1978) The branched respiratory system of the facultative photosynthetic bacterium Rhodopseudomonas capsulata. In: Degn H, Lloyd D and Hill GC (eds) Functions of Alternative Terminal Oxidases, pp 169–177. Pergamon Press, Oxford

    Google Scholar 

  • Zannoni D, Prince RC, Dutton PL and Marrs BL (1980) Isolation and characterization of a cytochrome c2 deficient mutant of Rhodopseudomonas capsulata. FEBS Lett 113: 289–293

    Article  CAS  Google Scholar 

  • Zannoni D, Peterson S and Marrs BL (1986) Recovery of the alternative oxidase dependent electron flow by fusion of membrane vesicles from Rhodobacter capsulatus mutant strains. Arch Microbiol 144: 375–380

    Article  CAS  Google Scholar 

  • Zannoni D, Venturoli G and Daldal F (1992) The role of the membrane bound cytochromes of b-and c-type in the electron transport chain of Rhodobacter capsulatus. Arch Microbiol 157: 367–374

    Article  CAS  Google Scholar 

  • Zsebo KM and Hearst J (1984) Genetic physical mapping of a photosynthetic gene cluster from Rhodopseudomonas capsulata. Cell 37: 937–947

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zannoni, D. (1995). Aerobic and Anaerobic Electron Transport Chains in Anoxygenic Phototrophic Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_44

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics