Skip to main content

Cytochromes, Iron-Sulfur, and Copper Proteins Mediating Electron Transfer from the Cyt bc1 Complex to Photosynthetic Reaction Center Complexes

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Electron transfer between the photosynthetic reaction center and the cytochrome bc1 complexes is often mediated by a high redox potential soluble cytochrome. In purple non-sulfur bacteria, this electron donor is usually cytochrome c2 (Cyt c2), while cyanobacteria and green algae can use the distantly related cytochrome c6 protein. Genetic and biochemical support for the role of these soluble mediators has been obtained in purple bacteria Rhodobacter sphaeroides and Rb. capsulatus, and in several cyanobacteria and green algae. However, recent experiments indicate that photosynthetic organisms often contain redundant electron donors to light-oxidized reaction center complexes. For example, soluble or membrane-bound cytochromes can substitute for the normal electron donor, Cyt c2, in purple non-sulfur bacteria. In addition, the soluble copper protein, plastocyanin, is interchangeable with cytochrome c6 in cyanobacteria and green algae even though it is apparently the sole electron donor in green plants.

In contrast, the soluble electron donor is either unknown or presumed to be different in photosynthetic bacteria that lack soluble high potential proteins in the Cyt c2 family. Spectroscopic analysis indicates this donor could be the high redox potential ferredoxin, HiPIP, in Rhodocyclus sp. and members of the Chromatiaceae and Ectothiorhodospiraceae families. In addition, cytochromes other than Cyt c2 may reduce reaction center complexes in some photosynthetic bacteria. For example, Cyt c-551 may be the donor in Ectothiorhodospira sp., while related cytochromes could function in Rc. purpureus and green bacteria. Finally, the membrane bound copper protein, auracyanin, from the green bacterium Chloroflexus aurantiacus could also be responsible for reaction center reduction. In these latter species, the combination of biochemical and genetic analyses have not been used to identify the actual electron donor(s) to reaction center complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agalidis I and Reiss-Hutton F (1992) Purification and characterization of Rhodocyclus gelatinosus photochemical reaction center. Biochim Biophys Acta 1098: 201–208

    CAS  Google Scholar 

  • Allen JP (1988) Crystallization and preliminary X-ray diffraction analysis of cytochrome c2 from Rhodobacter sphaeroides. J Mol Biol 204: 495–496

    Article  CAS  PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC. (1987) Structure of the reaction center from Rhodobacter sphaeroides R26: The protein subunits. Proc Natl Acad Sci USA 84:6162–6166

    CAS  PubMed  Google Scholar 

  • Ambler RP, Daniel M, Hermoso J, Meyer TE, Bartsch RG and Kamen MD (1979a) Cytochrome c2 sequence variation among the recognised species of purple nonsulphur photosynthetic bacteria. Nature 278: 659–660

    CAS  PubMed  Google Scholar 

  • Ambler RP, Meyer TE and Kamen MD (1979b) Anomalies in amino acid sequences of small cytochromes c and cytochromes c′ from two species of purple photosynthetic bacteria. Nature 278: 661–662

    CAS  PubMed  Google Scholar 

  • Ambler RP, Meyer TE, Cusanovich MA and Kamen MD (1987) The amino acid sequence of the cytochrome c2 from the phototrophic bacterium Rhodopseudomonas globiformis. Biochem J 246: 115–120

    CAS  PubMed  Google Scholar 

  • Ambler RP, Meyer TE and Kamen MD (1993) Amino acids sequences of cytochromes c-551 from the halophilic purple phototrophic bacteria, Ectothiorhodospira halophila and Ec. halochloris. Arch Biochem Biophys 306: 83–93

    CAS  PubMed  Google Scholar 

  • Axelrod HL, Feher G, Chirino A, Day M, Hsu BT and Rees DC (1994) Crystallization and X-ray structure determination of cytochrome c2 from Rhodobacter sphaeroides in three crystal forms. Acta Cryst D50: 596–602

    CAS  Google Scholar 

  • Bamforth CW and Quayle JR (1978) The dye-linked alcohol dehydrogenases of Rhodopseudomonas acidophila. Biochem J 169: 677–686

    CAS  PubMed  Google Scholar 

  • Bartsch RG, (1978) Cytochromes. In Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 249–279. Plenum Publishing Corp., New York

    Google Scholar 

  • Bartsch RG (1991) The distribution of soluble metallo-redox proteins in purple phototrophic bacteria. Biochim Biophys Acta 1058: 28–30

    CAS  PubMed  Google Scholar 

  • Benning MM, Wesenberg G, Caffrey MS, Bartsch RG, Meyer TE, Cusanovich MA, Rayment I and Holden HM (1991) Molecular structure of cytochrome c2 isolated from Rhodobacter capsulatus determined at 2.5Ã… resolution. J Mol Biol 220: 673–685

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosyn Res 33: 91–111

    CAS  PubMed  Google Scholar 

  • Bott M, Ritz D and Hennecke H (1991) The Bradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c. J Bacteriol 173: 6766–6772

    CAS  PubMed  Google Scholar 

  • Bovy A, DeVrieze G, Borrias M and Weisbeek P (1992) Transcriptional regulation of the plastocyanin and cytochrome c553 genes from the cyanobacterium Anabaena species PCC7937. Mol Microbiol 6: 1507–1513

    CAS  PubMed  Google Scholar 

  • Brandner JP and Donohue TJ (1994) The Rhodobacter sphaeroides cytochrome c2 signal peptide is not necessary for export and heme attachment. J Bacteriol 176: 602–609

    CAS  PubMed  Google Scholar 

  • Brandner JP, McEwan AG, Kaplan S and Donohue TJ (1989) Expression of the Rhodobacter sphaeroides cytochrome c2 structural gene. J Bacteriol 171: 360–368

    CAS  PubMed  Google Scholar 

  • Brandner JP, Stabb EV, Temme R and Donohue TJ (1991) Regions of Rhodobacter sphaeroides cytochrome c2 required for export, heme attachment, and function. J Bacteriol 173: 3958–3965

    CAS  PubMed  Google Scholar 

  • Briggs LM, Pecoraro VL and McIntosh L (1990) Copper-induced expression, cloning and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC6803. Plant Mol Biol 15: 633–642

    Article  CAS  PubMed  Google Scholar 

  • Bruce BD, Fuller RC and Blankenship RE (1982) Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci USA 79:6532–6536

    CAS  Google Scholar 

  • Büttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and photosystem I are related. Proc Natl Acad Sci USA 89: 8135–8139

    PubMed  Google Scholar 

  • Burkey KO and Gross EL (1981) Chemical modification of spinach plastocyanin: Separation and characterization of four different forms. Biochemistry 20: 2961–296

    CAS  PubMed  Google Scholar 

  • Caffrey MS, Bartsch RG and Cusanovich MA (1992) Study of cytochrome c2-reaction center interaction by site-directed mutagenesis. J Biol Chem 267: 6317–6321

    CAS  PubMed  Google Scholar 

  • Case GD and Parson WW (1973) Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium. Biochim Biophys Acta 292: 677–684

    CAS  PubMed  Google Scholar 

  • Chang CH, El-Kabbani O, Tiede D, Norris J and Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30:5352–5360

    CAS  PubMed  Google Scholar 

  • Chory J, Donohue TJ, Varga AR, Staehelin LA and Kaplan S (1984) Induction of the photosynthetic membrane of Rhodopseudomonas sphaeroides: Biochemical and morphological studies. J Bacteriol 159: 540–554

    CAS  PubMed  Google Scholar 

  • Clayton RK and Clayton BJ (1978) Properties of photochemical reaction centers purified from Rhodopseudomonas gelatinosa. Biochim Biophys Acta 501: 470–477

    CAS  PubMed  Google Scholar 

  • Coremans JMCC, Van der Wal HN, Van Grondelle R, Amesz J and Knaff DB (1985) The pathway of cyclic electron transport in chromatophores of Chromatium vinosum. Evidence for a Q-cycle mechanism. Biochim Biophys Acta 807: 134–142

    CAS  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR and Snozzi M (1985) The role of the quinone pool in the cyclic electron transfer chain of Rhodopseudomonas sphaeroides: A modified Q-cycle mechanism. Biochim Biophys Acta 723: 202–218

    Google Scholar 

  • Cusanovich MA and Bartsch RG (1969) A high potential cytochrome c from Chromatium chromatophores. Biochim Biophys Acta 189: 245–255

    CAS  PubMed  Google Scholar 

  • Daldal F, Cheng S, Applebaum J, Davidson E and Prince RC (1986) Cytochrome c2 is not essential for photosynthetic growth of Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 83:2012–2016

    CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3Ã… resolution. Nature 318: 618–624

    Article  Google Scholar 

  • Donohue TJ and Kaplan S (1991) Genetic techniques in the Rhodospirillaceae. Methods in Enzymol 204: 459–485

    CAS  Google Scholar 

  • Donohue TJ, McEwan AG and Kaplan S (1986) DNA sequence and expression of the Rhodobacter sphaeroides cytochrome c2 structural gene. J Bacteriol 168: 962–972

    CAS  PubMed  Google Scholar 

  • Donohue TJ, McEwan AG, Van Doren S, Crofts AR and Kaplan S (1988) Phenotypic and genetic characterization of cytochrome c2-deficient mutants of Rhodobacter sphaeroides. Biochemistry 27: 1918–1925

    Article  CAS  PubMed  Google Scholar 

  • Dracheva S, Williams JC, Van Driessche G, Van Beeumen JJ and Blankenshtp RE (1991) The primary structure of cytochrome c-554 from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry 30: 11451–11458

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt H, Baumeister W and Engel A (1986) Stoichiometric model of the photosynthetic unit of Ectothiorhodospira halochloris. Proc Natl Acad Sci USA 83: 8972–8976

    CAS  Google Scholar 

  • Eraso J and Kaplan S (1994) prr A, a putative response regulator involved in oxygen regulation of photosynthetic gene expression in Rhodobacter sphaeroides, J Bacteriol 176: 32–43

    CAS  PubMed  Google Scholar 

  • Feiler U, Nitschke W and Michel H (1992) Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the iron sulfur centers F-A and F-B and a bound cytochrome subunit. Biochemistry 31: 2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Fischer U (1988) Soluble electron transport proteins of Chlorobiaceae. In Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic bacteria, pp 127–131. Plenum Press, NY

    Google Scholar 

  • Fitch J, Cannac V, Meyer TE, Cusanovich MA, Tollin G, Van Beeumen J, Rott MA and Donohue, TJ (1989) Expression of a cytochrome c2 isozyme restores photosynthetic growth of Rhodobacter sphaeroides mutants lacking the wild type cytochrome c2 gene. Arch Biochem Biophys 271: 502–507

    Article  CAS  PubMed  Google Scholar 

  • Fowler CF, Nugent NA and Fuller RC (1971) The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica. Proc Natl Acad Sci USA 68: 2278–2282

    CAS  PubMed  Google Scholar 

  • Freeman JC and Blankenship RE (1990) Isolation and characterization of the membrane-bound cytochrome c-554 from the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus. Photosyn Res 23: 29–38

    CAS  Google Scholar 

  • Fuller RC, Sprague SG, Gest H and Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Letts 182: 345–349

    Article  CAS  Google Scholar 

  • Gabellini N, Bowyer JR, Hurt E, Melandri BA and Hauska G. (1982) A cytochrome bc1 complex with ubiquinol-cytochrome c2 oxidoreductase activity from Rhodopseudomonas sphaeroides GA. Eur J Biochem 126: 105–111

    Article  CAS  PubMed  Google Scholar 

  • Gao JL, Shopes RJ and Wraight CA (1990) Charge recombination between the oxidized high-potential c-type cytochrome and Q-A negative in reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 1015: 96–108

    CAS  Google Scholar 

  • Gennis RB, Casey RP, Azzi A and Ludwig B (1982) Purification and characterization of the cytochrome c oxidase from Rhodopseudomonas sphaeroides. Eur. J. Biochem. 125: 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90: 1642–1646

    CAS  PubMed  Google Scholar 

  • Gray GO, Gaul DF and Knaff DB (1983) Partial purification and characterization of two soluble c-type cytochromes from Chromatium vinosum. Arch Biochem Biophys 222: 78–86

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Davidson E and Daldal F (1992) Mutagenesis of methionine-183 drastically affects the physicochemical properties of cytochrome c1 of the bc1 complex of Rhodobacter capsulatus. Biochemistry 31:11864–11873

    Article  CAS  PubMed  Google Scholar 

  • Guner S, Robertson DE, Yu L, Qiu ZH, Yu CA and Knaff DB (1991) The Rhodospirillum rubrum cytochrome bc1 complex: Redox properties, inhibitor sensitivity and proton pumping. Biochim Biophys Acta 1058: 269–279

    CAS  PubMed  Google Scholar 

  • Guner S, Willie A, Millett F, Caffrey MS, Cusanovich MA, Robertson DE and Knaff DB (1993) The interaction between cytochrome c2 and the cytochrome bc1 complex in the photosynthetic purple bacteria Rhodobacter capsulatus and Rhodopseudomonas viridis. Biochemistry 32: 4793–4800

    Article  CAS  PubMed  Google Scholar 

  • Hacker B, Barquera B, Crofts AR and Gennis RB (1993) Characterization of mutations in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides that affect the quinone reductase site (Qc), Biochemistry 32: 4403–4410

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Ayres M, Zha X, O’Brien P, Durham B, Knaff DB and Millett F (1987) The reaction of cytochromes c and c2 with the Rhodospirillum rubrum reaction center involves the heme crevice domain. J Biol Chem 262: 11046–11051

    CAS  PubMed  Google Scholar 

  • Hall J, Zha X, Yu L, Yu CA and Millett F (1989) Role of specific lysine residues in the reaction of Rhodobacter sphaeroides cytochrome c2 with the cytochrome bc1. Biochemistry 28: 2568–2571

    CAS  PubMed  Google Scholar 

  • Hill KL, Li HH, Singer J and Merchant S (1991) Isolation and structural characterization of the Chlamydomonas reinhardtii gene for cytochrome c-6; analysis of the kinetics and metal sensitivity of its copper-responsive expression. J Biol Chem 266: 15060–15067

    CAS  PubMed  Google Scholar 

  • Hippler M, Haehnel W and Ratajczak R (1989) Identification of the plastocyanin binding subunit of photosystem I. FEBS Letts 250: 280–284

    Article  CAS  Google Scholar 

  • Ho KK and Krogmann DW (1984) Electron donors to P700 in cyanobacteria and algae: An instance of unusual genetic variability. Biochim Biophys Acta 766: 310–316

    CAS  Google Scholar 

  • Hudig H, Kaufmann N and Drews G (1986) Respiratory deficient mutants of Rhodobacter capsulatus. Arch Microbiol 145: 378–385

    Google Scholar 

  • Hurt EC and Hauska G (1984) Purification of membrane bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum. FEBS Letts 168: 149–154

    Article  CAS  Google Scholar 

  • Itoh S (1980) Effects of surface potential and membrane potential on the midpoint potential of cytochrome c-555 bound to the chromatophore membrane of Chromatium vinosum. Biochim Biophys Acta 591: 346–355

    CAS  PubMed  Google Scholar 

  • Imhoff JF and Trüper HG (1984) Purple nonsulfur bacteria. In Hensyl WR (ed) Bergy’s Manual of Systematic Bacteriology, Vol. 3, pp 1658–1682 Williams and Wilkins, Baltimore Md

    Google Scholar 

  • Jenney FE and Daldal F (1993) A novel membrane-associated c-type cytochrome, Cyt c y , can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12: 1283–1292

    CAS  PubMed  Google Scholar 

  • Jones MR, McEwan AG and Jackson JB (1990) The role of c-type cytochromes in the photosynthetic electron transport pathway of Rhodobacter capsulatus.Biochim Biophys Acta 1019: 59–66

    CAS  PubMed  Google Scholar 

  • Jornvall H, Persson B and Jeffery J (1987) Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long chain alcohol dehydrogenases. Eur J Biochem 167: 195–201

    Article  CAS  PubMed  Google Scholar 

  • Kennel SJ and Kamen MD (1971a) Iron containing proteins in Chromatium. I. Solubilization of membrane-bound cytochrome. Biochim Biophys Acta 234: 458–467

    CAS  PubMed  Google Scholar 

  • Kennel SJ and Kamen MD (1971b) Iron containing proteins in Chromatium. II. Purification and properties of cholate-solubilized cytochrome complex. Biochim Biophys Acta 253: 153–166

    CAS  PubMed  Google Scholar 

  • Kennel SJ, Bartsch RG and Kamen MD (1972) Observations on light-induced oxidation reactions in the electron transport system of Chromatium. Biophys J 12: 882–896

    CAS  PubMed  Google Scholar 

  • Kiley PJ and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52: 50–69

    CAS  PubMed  Google Scholar 

  • Knaff DB, Whetstone R and Carr JW (1980) The role of soluble cytochrome c-551 in cyclic electronflow-driven active transport in Chromatium vinosum. Biochim Biophys Acta 590: 50–58

    CAS  PubMed  Google Scholar 

  • Knaff DB, Willie A, Long JE, Kriauciunas A, Durham B and Millett F (1991) Reaction of cytochromec2 with photosynthetic reaction centers from Rhodopseudomonas viridis. Biochemistry 30: 1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Komiya H, Yeates TO, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1; symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci USA 85:9012–9016

    CAS  PubMed  Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) 3-dimensional structure of system I of photosynthesis at 6 angstrom resolution. Nature 361: 326–331

    Article  CAS  Google Scholar 

  • Kukushima A, Matsuura K, Shimada K and Satoh T (1988) Reaction center-B870 pigment protein complexes with bound cytochrome c-555 and cytochrome c-551 from Rhodocyclus gelatinosus. Biochim Biophys Acta 933: 399–405

    Google Scholar 

  • Kusche WH and Trüper HG (1984) Cytochromes of the purple sulfur bacterium Ectothiorhodospira shaposhnikovii. Z Naturforsch. 39c: 894–901

    CAS  Google Scholar 

  • Lascelles J (1978) Regulation of pyrrole synthesis. In Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 795–808. Plenum Publishing Corp., NY

    Google Scholar 

  • Laudenbach DE, Hebert SK, McDowell C, Fork DC, Grossman AR and Strauss NA (1990) Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus Plant Cell 2: 913–924

    Article  CAS  PubMed  Google Scholar 

  • Lefèbvre S, Picorel R, Cloutier Y and Gingras G (1984) Photoreaction center of Ectothiorhodospira sp. Pigment, heme, quinone and polypeptide composition. Biochemistry 23:5279–5288

    Google Scholar 

  • Leguijt T and Hellingwerf KJ (1991) Characterization of reaction center/antenna complexes from bacteriochlorophyll a containing Ectothiorhodospiraceae. Biochim Biophys Acta 1057: 353–360

    CAS  Google Scholar 

  • Liang JH, Nielsen GM, Lies DP, Burriss RH, Roberts GP and Ludden PW (1991) Isolation and physiological characterization of mutations in the genes encoding the reversible ADP-ribosylation system of Rhodospirillum rubrum. J Bacteriol 173:6903–6909

    CAS  PubMed  Google Scholar 

  • Liebetanz R, Hornberger U and Drews G (1991) Organization of the genes for the reaction center L and M subunits and B870 antenna polypeptides alpha and beta from the aerobic photosynthetic bacterium Erythrobacter sp. OCH114. Mol Microbiol 5: 1459–1468

    CAS  PubMed  Google Scholar 

  • Lochau W (1981) Evidence for a dual role of cytochrome c-553 and plastocyanin in photosynthesis and respiration of the cyanobacterium Anabaena variabilis. Arch Microbiol 128: 336–340

    Google Scholar 

  • Long JE, Durham B, Okamura M and Millett F (1989) Role of specific lysine residues in binding cytochrome c2 to the Rhodobacter sphaeroides reaction center in optimal orientation for rapid electron transfer. Biochemistry 28: 6970–6974

    Article  CAS  PubMed  Google Scholar 

  • MacGregor BJ and Donohue TJ (1991) Evidence for two promoters for the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol 173: 3949–3957

    CAS  PubMed  Google Scholar 

  • Matsuura K and Shimada K (1986) Cytochromes functionally associated to photochemical reaction centers in Rhodopseudomonas palustris and Rhodopseudomonas acidophila. Biochim Biophys Acta 852: 9–18

    CAS  Google Scholar 

  • Matsuura K, Fukushima A, Shimada K and Satoh T (1988) Direct and indirect electron transfer from cytochrome c and cytochrome c2 to the photosynthetic reaction center in pigment-protein complexes isolated from Rhodocyclus gelatinosus. FEBS Letts 237: 21–25

    Article  CAS  Google Scholar 

  • McManus JD, Brune DC, Han J, Sanders-Loehr J, Meyer TE, Cusanovich MA, Tollin G and Blankenship RE (1992) Isolation, characterization and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus. J Biol Chem 267: 6531–6540

    CAS  PubMed  Google Scholar 

  • Meissner J, Krauss JH, Jurgens UJ and Weekesser J (1988) Chemical analysis of peptidoglycan from species of Chromatiaceae and Ectothiorhodospiraceae. J Bacteriol 170: 3213–3216

    CAS  PubMed  Google Scholar 

  • Merchant S and Bogorad L (1987a) The Cu(II)-repressible plastidic cytochrome c. J Biol Chem 262: 9062–9067

    CAS  PubMed  Google Scholar 

  • Merchant S and Bogorad L (1987b) Metal ion regulated gene expression: Use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J 6: 2531–2535

    CAS  PubMed  Google Scholar 

  • Meyer TE (1985) Isolation and characterization of soluble cytochromes, ferrodoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta 806: 175–183

    CAS  PubMed  Google Scholar 

  • Meyer TE, Przysiecki CT, Watkins JA, Bhattacharyya A, Simondsen RP, Cusanovich MA and Tollin G (1983) Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanism of electron transfer proteins. Proc Natl Acad Sci USA 80: 6740–6744

    CAS  PubMed  Google Scholar 

  • Meyer TE, Watkins JA, Przysiecki CT, Tollin G and Cusanovich MA (1984) Electron-transfer reactions of photoreduced flavin analogues with c-type cytochromes: Quantitation of steric and electrostatic factors. Biochemistry 23: 4761–4767

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE, Cusanovich MA, Krogmann DW, Bartsch RG and Tollin G (1987) Kinetics of reduction by free flavin semiquinones of algal cytochromes and plastocyanin. Arch Biochem Biophys 258: 307–314

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE, Fitch JC, Bartsch RG, Tollin D and Cusanovich MA (1990a) Unusual high redox potential ferrodoxins and soluble cytochromes from the moderately halophilic purple phototrophic bacterium Rhodospirillum salinarum. Biochim Biophys Acta 1017: 118–124

    CAS  Google Scholar 

  • Meyer TE, Cannac V, Fitch J, Bartsch RG, Tollin D, Tollin G and Cusanovich MA (1990b) Soluble cytochromes and ferrodoxins from the marine purple phototrophic bacterium Rhodopseudomonas marina. Biochim Biophys Acta 1017: 125–138

    CAS  PubMed  Google Scholar 

  • Meyer TE, Bartsch RG, Cusanovich MA and Tollin G (1993a) Kinetics of photooxidation of soluble cytochromes, HiPIP, and azurin by the photosynthetic reaction center of the purple phototrophic bacterium Rhodopseudomonas viridis. Biochemistry 32: 4719–4726

    CAS  PubMed  Google Scholar 

  • Meyer TE, Zhao ZG, Cusanovich MA and Tollin G (1993b) Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin. Biochemistry 32: 4552–4559

    CAS  PubMed  Google Scholar 

  • Mi H, Endo T, Schreiber U, Ogawa T and Osada K (1992) Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 33: 1233–1237

    CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Miller M, Liu X, Snyder SW, Thurnauer MC and Biggins J (1992) Photosynthetic electron transfer reactions in the green sulfur bacterium Chlorobium vibrioforme: Evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. Biochemistry 31: 4354–4363

    CAS  PubMed  Google Scholar 

  • Morand LZ, Frame MK, Colvert KK, Johnson DA, Krogmann DW and Davis DJ (1989) Plastocyanin cytochrome f interaction. Biochemistry 28: 8039–8047

    CAS  PubMed  Google Scholar 

  • Moser CC and Dutton PL (1988) Cytochrome c and c2 binding dynamics and electron transfer with photosynthetic reaction center protein and other integral membrane redox proteins. Biochemistry 27: 2450–2461

    Article  CAS  PubMed  Google Scholar 

  • Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW and Williams JC (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: Phenylalanine to leucine at position L167 and histidine to phenylalanine at L168. Biochemistry 32: 3498–3505

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Yamagishi M, Yoshizaki F and Sugimura Y (1992) Synthesis of plastocyanin and cytochrome c-553 are regulated by copper at the pre-translation level in a green alga, Pediastrum borganum. J. Biochem. 111: 219–224

    CAS  PubMed  Google Scholar 

  • Neidle EL and Kaplan S (1993) 5-aminolevulinic acid availability and control ofspectral complex formation in HemA and HemT mutants of Rhodobacter sphaeroides. J Bacteriol 175: 2304–2313.

    CAS  PubMed  Google Scholar 

  • Nitschke W, Feiler U and Rutherford AW (1990a) Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry 29: 3834–3842

    CAS  PubMed  Google Scholar 

  • Nitschke W, Setif P, Liebl U, Feiler U and Rutherford AW (1990b) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29: 11079–11088

    CAS  PubMed  Google Scholar 

  • Okamura K, Miyata T, Iwanaga S, Takamiya K and Nishimura M (1987) Complete amino acid sequence of cytochrome c-551 from Erythrobacter species strain OCH-114. J. Biochem. 101: 957–966

    CAS  PubMed  Google Scholar 

  • Okkels JS, Kjaer B, Hansson O, Svendsen I, Moller BL and Scheller HV (1992) A membrane-bound monoheme cytochrome c-551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction complex. J Biol Chem 267: 21139–21145

    CAS  PubMed  Google Scholar 

  • Overfield RE and Wraight CA (1980) Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. I. Studies with neutral membranes. Biochemistry 19: 3322–3327

    CAS  PubMed  Google Scholar 

  • Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl. Proc Natl Acad Sci USA 80: 80–84

    CAS  Google Scholar 

  • Prince RC and Daldal F (1987) Physiological electron donors to the photochemical reaction center of Rhodobacter capsulatus. Biochim Biophys Acta 894: 370–378

    CAS  PubMed  Google Scholar 

  • Prince RC and Olson JM (1976) Some thermodynamic and kinetic properties of the primary photochemical reactants in a complex from a green photosynthetic bacterium. Biochim Biophys Acta 423: 357–362

    CAS  PubMed  Google Scholar 

  • Prince RC, Baccarini-Melandri A, Hauska GA, Melandri BA and Crofts AR (1975) Asymmetry of an energy transducing membrane: The localization of cytochrome c2 in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Biochim Biophys Acta 387: 212–227

    CAS  PubMed  Google Scholar 

  • Prince RC, Gest H and Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810: 377–384

    CAS  Google Scholar 

  • Prince RC, Davidson E, Haith CE and Daldal F (1986) Photosynthetic electron transfer in the absence of cytochrome c2 in Rhodopseudomonas capsulata: Cytochrome c2 is not essential for electron flow from the Cyt bc1 complex to the reaction center. Biochemistry 25: 5208–5214

    Article  CAS  Google Scholar 

  • Qin L and Kostic NM (1992) Electron transfer reactions of cytochrome f with flavin semiquinones and with plastocyanin: Importance of protein-protein electrostatic interactions and of donor-acceptor coupling. Biochemistry 31: 5145–5150

    Article  CAS  PubMed  Google Scholar 

  • Quayle JC and Pfennig N (1975) Methanol utilization by Rhodospirillaceae. Arch Microbiol 102: 193–198

    Article  CAS  PubMed  Google Scholar 

  • Rickle GK and Cusanovich MA (1979) The kinetics of photooxidation of c-type cytochromes by Rhodospirillum rubrum reaction centers. Arch Biochem Biophys 197: 589–598

    Article  CAS  PubMed  Google Scholar 

  • Rosen D, Okamura MY, Abresch EC, Valkirs GE and Feher G (1983) Interaction of cytochrome c with reaction centers of Rhodopseudomonas sphaeroides R-26: Localization of the binding site by chemical cross-linking and immunological studies. Biochemistry 22: 335–341

    Article  CAS  PubMed  Google Scholar 

  • Rott MA and Donohue TJ (1990) Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth. J Bacteriol 172: 1954–1961

    CAS  PubMed  Google Scholar 

  • Rott MA, Fitch J, Meyer TE and Donohue TJ (1992) Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains of Rhodobacter sphaeroides. Arch Biochem Biophys 292: 576–582

    Article  CAS  PubMed  Google Scholar 

  • Rott MA, Witthuhn VC, Schilke BA, Soranno M, Ali A and Donohue TJ (1993) Genetic evidence for the role of isocytochrome c2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants. J Bacteriol 175: 358–366

    CAS  PubMed  Google Scholar 

  • Sandmann G (1986) Formation of plastocyanin and cytochrome c-553 in different species of blue green algae. Arch Microbiol 145: 76–79

    Article  CAS  Google Scholar 

  • Schilke BA and Donohue TJ (1992) δ-Aminolevulinic acid couples cycA transcription to changes in heme availability in Rhodobacter sphaeroides. J Mol Biol 226: 101–115

    Article  CAS  PubMed  Google Scholar 

  • Schilke BA and Donohue TJ (1995) ChrR positively regulates transcription of the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol 177: 1929–1937

    CAS  PubMed  Google Scholar 

  • Self SJ, Hunter CN, and Leatherbarrow RJ (1990) Molecular cloning, sequencing and expression of cytochrome c2 from Rhodospirillum rubrum. Biochem J 265: 599–604

    CAS  PubMed  Google Scholar 

  • Shiozawa JA, Lottspeich F, Oesterhelt D and Feick R (1989) The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem 180: 75–84

    Article  CAS  PubMed  Google Scholar 

  • Smit HWJ, Amesz J and Van der Hoeven MFR (1987) Electron transport and triplet formation in membranes of the photosynthetic bacterium Heliobacterium chlorum. Biochim Biophys Acta 893: 232–240

    CAS  Google Scholar 

  • Takeda Y and Shimizu T (1992) Expression of a cytochrome c-553(CO) gene that complements the second subunit deficiency of membrane bound alcohol dehydrogenase in Gluconobacter suboxydans subsp. a. J Ferm Bioeng 73: 89–93

    Article  CAS  Google Scholar 

  • Takemura H, Horinouchi S and Beppu T (1991) Novel insertion sequence IS1380 from Aceotbacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol 173: 7070–7076

    CAS  PubMed  Google Scholar 

  • Then J and Trüper HG (1983) Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Arch Microbiol 135: 254–258

    Article  CAS  Google Scholar 

  • Tiede DM and Chang CH (1988) The cytochrome c binding surface of reaction centers from Rhodobacter sphaeroides Israel J Chem 28: 183–191

    CAS  Google Scholar 

  • Tiede DM, Vashishta AC and Gunner MR (1993) Electron-transfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reaction center and soluble c-cytochromes. Biochemistry 32: 4515–4531

    Article  CAS  PubMed  Google Scholar 

  • Tollin G, Cheddar G, Watkins JA, Meyer TE and Cusanovich MA (1984) Electron transfer between flavodoxin semiquinone and c-type cytochromes: Correlations between electrostatically corrected rate constants, redox potentials, and surface topologies. Biochemistry 23: 6345–6349

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama Y, Doi M, Takamiya K and Nishimura M (1983) Isolation, purification and some properties of cytochrome c-551 from Chromatium vinosum. Plant Cell Physiol 24: 11–16

    CAS  Google Scholar 

  • Trost JT and Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28: 9898–9904

    Article  CAS  PubMed  Google Scholar 

  • Trost JT, McManus JD, Freeman JC, Ramakrishna BL and Blankenship RE (1988) Auracyanin, a blue copper protein from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry 27: 7858–7863

    Article  CAS  Google Scholar 

  • Trost JT, Brune DC and Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from Heliobacteria are similar to photosystem I. Photosyn Res 32: 11–22

    CAS  PubMed  Google Scholar 

  • Van Beeumen JJ (1991) Primary structure of procaryotic diheme cytochromes c. Biochim Biophys Acta 1058: 56–60

    PubMed  Google Scholar 

  • Van Beeumen J, Ambler RP, Meyer TE, Kamen MD, Olson JM and Shaw EK (1976) The amino acids sequences of cytochromes c-555 from two green-sulphur bacteria of the genus Chlorobium. Biochem J 159: 757–774

    PubMed  Google Scholar 

  • Van Grondelle R, Duysens LNM, Van der Wel JA and Van der Wal HN (1977) Function of three cytochromes in photosynthesis of whole cells of Rhodospirillum rubrum as studied by flash spectroscopy. Biochim Biophys Acta 461: 188–201

    CAS  PubMed  Google Scholar 

  • Van Vliet P, Zannoni D, Nitschke W, and Rutherford AW (1991) Membrane-bound cytochromes in Chloroflexus aurantiacus studied by EPR. Eur J Biochem 199: 317–323

    Article  PubMed  Google Scholar 

  • Vos MH, Klaasen HE and Van Gorkom HJ (1989) Electron transport in Heliobacterium chlorum whole cells studied by electroluminescence and absorbance difference spectroscopy. Biochim Biophys Acta 973: 163–169

    CAS  Google Scholar 

  • Widger WR (1991) The cloning and sequencing of Synechococcus sp PCC7002 petCA operon: Implications for cytochrome c-553 binding domain of cytochrome f. Photosyn Res 30: 71–84

    CAS  Google Scholar 

  • Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-553 in Chlamydomonas. Eur J Biochem 87: 9–19

    Article  CAS  PubMed  Google Scholar 

  • Wynn RM, Luong C and Malkin R (1989) Maize photosystem I: Identification of the subunit which binds plastocyanin. Plant Physiol 91: 445–49

    CAS  Google Scholar 

  • Zannoni D, Venturoli G and Daldal F (1992) The role of the membrane bound cytochromes of b-and c-type in the electron transport chain of Rhodobacter capsulatus. Arch Microbiol 157:367–374

    Article  CAS  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB and Whitmarsh J (1992) Copper-mediated regulation of cytochrome c-553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267: 19054–19059

    CAS  PubMed  Google Scholar 

  • Zuber H (1988) Structural studies on the antenna complexes and polypeptides of Chloroflexus aurantiacus and other green photosynthetic bacteria. In Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 53–55. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meyer, T.E., Donohue, T.J. (1995). Cytochromes, Iron-Sulfur, and Copper Proteins Mediating Electron Transfer from the Cyt bc1 Complex to Photosynthetic Reaction Center Complexes. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_34

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics