Skip to main content

Taxonomy and Physiology of Filamentous Anoxygenic Phototrophs

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

The filamentous anoxygenic phototrophs are a diverse group of photosynthetic bacteria that are of particular evolutionary significance. The best known species is the thermophilic Chloroflexus aurantiacus. This organism is a prominent member of hot spring microbial mat communities. Because it forms a deep division in the eubacterial line of descent and because it has an interesting combination of characteristics found in very different and diverse groups of phototrophic prokaryotes, it is of particular significance in addressing questions of evolutionary importance.

There are several other strains of filamentous photosynthetic bacteria from a wide range of environments that are substantially different from Cf. aurantiacus yet have enough similarity in fundamental photosynthetic features to be likely relatives. Sequence data (16S rRNA) are needed to define the phylogenetic range of the family Chloroflexaceae. Some of the interesting biology of the diverse filamentous phototrophs is discussed in this chapter along with the taxonomic and phylogenetic problems they present.

The physiology of Cf. aurantiacus is intriguing in several respects. The recently described autotrophic CO2 fixation pathway involving 3-hydroxypropionate is unlike any other known autotrophic mechanism. C. aurantiacus is also unique among all groups of phototrophs in lacking the capacity for nitrogen fixation. The regulation ofpigment synthesis in response to changing growth conditions is particularly interesting due to the presence of two different photosynthetic pigments located in different sub-cellular environments. The fact that Cf. aurantiacus is a thermophile provides another dimension of complexity to its physiology. It is also quite resistant to UV radiation. Some of its characteristics may be relicts from Precambrian ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson KL, Tayne TA and Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53: 2343–2352

    CAS  PubMed  Google Scholar 

  • Avissar YJ, Ormerod JG and Beale SI (1989) Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151: 513–519

    Article  CAS  PubMed  Google Scholar 

  • Bateson MM and Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54: 1738–1743

    CAS  PubMed  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  CAS  PubMed  Google Scholar 

  • Bobe FW, Pfennig N, Swanson KL and Smith KM (1990) Red shift of absorption maxima in chlorobiineae through enzymic methylation of their antenna bacteriochlorophylls. Biochemistry 29: 4340–4348

    Article  CAS  PubMed  Google Scholar 

  • Boomer SM, Austinhirst R, Pierson BK (1990) New bacteriochlorophyll-containing filamentous phototrophs from hot spring microbial mats. Am Soc Microbiol, Annual Meeting, Anaheim, CA. Abstract

    Google Scholar 

  • Broch-Due M and Ormerod JG (1978) Isolation of a BChl c mutant from Chlorobium with BChl d by cultivation at low light intensity. FEMS Microbiol Lett 3: 305–308

    Article  Google Scholar 

  • Brune DC, Nozawa T, and Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. I. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26: 8644–8652

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1973) Ecology of blue-green algae in hot springs. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 379–414. Blackwell, Oxford

    Google Scholar 

  • Castenholz RW (1984) Composition of hot spring microbial mats: a summary. Cohen Y, Castenholz RW and Halvorson HO (ed) Microbial Mats: Stromatolites, pp 101–119. Alan R Liss, Inc., New York

    Google Scholar 

  • Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (ed) Green Photosynthetic Bacteria, pp 243–255. Plenum Press, New York

    Google Scholar 

  • Castenholz RW and Pierson BK (1989) Genus Heliothrix. In: Staley JT, Bryant MP, Pfennig N and Holt JG (ed) Bergey’s Manual of Systematic Bacteriology, Vol 3, pp 1702–1703. Williams & Wilkins, Baltimore

    Google Scholar 

  • D’Amelio ED, Cohen Y and Des Marais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. Arch Microbiol 147: 213–220

    CAS  PubMed  Google Scholar 

  • D’Amelio ED, Cohen Y and Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 97–113. Amer Soc Microbiol, Washington, DC

    Google Scholar 

  • Des Marais DJ, D’Amelio ED, Farmer JD, Jørgensen BB, Palmisano AC and Pierson BK (1992) Case study of a modern microbial mat-building community: the submerged cyanobacterial mats of Guerrero, Negro, Baja California Sur, Mexico. In: Schopf JW and Klein C. The Proterozoic Biosphere, pp 325–333. Cambridge Univ Press, New York

    Google Scholar 

  • Doemel WN and Brock TD (1974) Bacterial stromatolites: origin of laminations. Science 184: 1083–1085

    Google Scholar 

  • Doemel WN and Brock TD (1977) Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl Environ Microbiol 34: 433–452

    PubMed  Google Scholar 

  • Drutschmann M and Klemme J-H (1985) Sulflde-repressed, membrane-bound hydrogenase in the thermophilic facultative phototroph, Chloroflexus aurantiacus. FEMS Microbiol Lett 28: 231–235

    Article  CAS  Google Scholar 

  • Dubinina GA and Gorlenko VM (1975) New filamentous photosynthetic green bacteria containing gas vacuoles. Microbiology (Eng transl of Mikrobiologiya) 44: 452–458

    Google Scholar 

  • Eisenreich W, Strauss G, Werz U, Fuchs G and Bacher A (1993) Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus. FEBS Eur J Biochem 215: 619–632

    CAS  Google Scholar 

  • Fages F, Griebenow N, Griebenow K, Holzwarth AR, Schaffner K (1990) Characterization of light-harvesting pigments of Chloroflexus aurantiacus two new chlorophylls oleyl octadec-9-enyl and cetyl hexadecanyl bacteriochlorophyllides c. Journal of the Chemical Society Perkin Transactions I, O 10: 2791–2798

    Google Scholar 

  • Feick RG, Fitzpatrick M and Fuller RC (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. J. Bacteriol 150: 905–915

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Mechling M and Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60: 1500–1511

    PubMed  Google Scholar 

  • Giovannoni SJ, Revsbech NP, Ward DM and Castenholz RW (1987) Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch Microbiol 147: 80–87

    CAS  Google Scholar 

  • Golecki JR and Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148: 236–241

    Article  CAS  Google Scholar 

  • Gorlenko VM (1976) Characteristics of filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya (Eng transl) 44: 682–684

    Google Scholar 

  • Gorlenko VM (1988) Ecological niches of green sulfur and gliding bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (ed) Green Photosynthetic Bacteria, pp 257–267. Plenum Press, New York

    Google Scholar 

  • Gorlenko VM (1989a) Genus ‘Oscillochloris’. In: Staley JT, Bryant MP, Pfennig N and Holt JG (ed) Bergey’s Manual of Systematic Bacteriology. Vol 3, pp 1703–1706. Williams and Wilkins, Baltimore

    Google Scholar 

  • Gorlenko VM (1989b) Genus ‘Chloronema’. In: Staley JT, Bryant MP, Pfennig N and Holt JG (ed) Bergey’s Manual of Systematic Bacteriology. Vol 3, pp 1706–1707. Williams and Wilkins, Baltimore

    Google Scholar 

  • Gorlenko VM and Pivovarova TA (1977) On the belonging of bluegreen alga Oscillatoria coerulescens Gicklhorn, 1921 to a new genus of Chlorobacteria Oscillochloris nov. gen. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya 3: 396–409

    Google Scholar 

  • Halfen LN, Pierson BK, Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch. Mikrobiol. 82: 240–246

    Article  CAS  Google Scholar 

  • Hartmann RK, Wolters J, Kröger B, Schultze S, Specht T and Erdmann VA (1989) Does Thermus represent another deep eubacterial branching? System Appl Microbiol 11: 243–249

    CAS  Google Scholar 

  • Heda GD and Madigan MT (1986) Utilization of amino acids and lack of diazotrophy in the thermophilic anoxygenic phototroph Chloroflexus aurantiacus. J. Gen. Microbiol. 132: 2469–2473

    CAS  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxy-propionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151: 252–256

    Article  CAS  Google Scholar 

  • Holo H and Grace D (1987) Polyglucose synthesis in Chloroflexus aurantiacus studied by 13C-NMR. Arch Microbiol 148: 292–297

    Article  CAS  Google Scholar 

  • Holo H and Grace D (1988) A new CO2 fixation mechanism in Chloroflexus aurantiacus studied by 13C-NMR. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (ed) Green Photosynthetic Bacteria, pp 149–155. Plenum Press, New York

    Google Scholar 

  • Holo H and Sirevàg R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch Microbiol 145: 173–180

    Article  CAS  Google Scholar 

  • Ivanovsky RN (1993) Calvin cycle in a green mesophilic filamentous bacterium, Oscillochloris trichoides strain DG6. EMBO Workshop on Green and Heliobacteria, Nyborg, Denmark August 16–19, 1993, Abstract

    Google Scholar 

  • Ivanovsky RN, Krasilinkova EN and Fal YI (1993) A pathway of the autotrophic CO2 fixation in Chloroflexus aurantiacus. Arch Microbiol 159: 257–264

    Article  CAS  Google Scholar 

  • Jørgensen BB and Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb. Ecol. 16: 133–147

    Article  Google Scholar 

  • Jürgens UJ, Meißner J, Fischer U, König WA and Weckesser J (1987) Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 148: 72–76

    Article  Google Scholar 

  • Kaulen H and Klemme J-H (1983) No evidence of covalent modification of glutamine synthetase in the thermophilic phototrophic bacterium Chloroflexus aurantiacus. FEMS Microbiol Lett 20: 75–79

    Article  CAS  Google Scholar 

  • Keppen OI, Lebedeva NV, Troshina OYu, and Rodionov Yu V (1989) The nitrogenase activity of a filamentous phototrophic green bacterium. Mikrobiologiya 58: 520–521

    CAS  Google Scholar 

  • Keppen OI, Baulina OI, Lysenko AM, and Kondratieva EN (1993a) New green bacterium belonging to family Chloroflexaceae. Mikrobiologiya (Eng transl) 62: 179–185

    Google Scholar 

  • Keppen OI, Baulina OI, and Kondratieva EN (1993b) Oscillochloris trichoides neotype strain DG6. EMBO Workshop on Green and Heliobacteria, Nyborg, Denmark August 16–19, 1993. Abstract

    Google Scholar 

  • Kern M and Klemme J-H (1989) Inhibition of bacteriochlorophyll biosynthesis by gabaculin (3-amino, 2,3-dihydrobenzoic acid) and presence of an enzyme of the C5-pathway of δ-aminolevulinate synthesis in Chloroflexus aurantiacus. Z Naturforsch 44c: 77–80

    Google Scholar 

  • Kharchenko SG (1992) Characteristic features of changes in the absorption spectra of phototrophic green bacteria as an index of the stage of culture growth. Mikrobiologiya (Eng transl) 61: 305–309

    Google Scholar 

  • Klemme J-H (1989) Organic nitrogen metabolism of phototrophic bacteria. Anton van Leeuwenhoek J Microbiol 55: 197–219

    CAS  Google Scholar 

  • Klemme J-H, Laakmann-Ditges G and Mertschuweit J (1988) Ammonia assimilation and amino acid metabolism in Chloroflexus aurantiacus. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (ed) Green Photosynthetic Bacteria, pp 173–174. Plenum Press, New York

    Google Scholar 

  • Klemme J-H, Laakmann-Ditges G and Mertschuweit J (1990) Cellular amino acid concentrations and regulation of aspartate kinase in the thermophilic phototrophic prokaryote Chloroflexus aurantiacus. Zeitschrift für Naturforschung C, Biosciences 45: 74–78

    CAS  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG and Sirevàg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 132: 149–154

    Article  CAS  Google Scholar 

  • KondraÅ¥eva EN and Krasiľnikova EN (1988) Utilization of thiosulfate by Chloroflexus aurantiacus. Mikrobiologiya (Eng transl) 57: 291–294

    Google Scholar 

  • Krasiľnikova EN (1987) ATP sulfurylase activity in Chloroflexus aurantiacus and other photosynthesizing bacteria as a function of temperature. Mikrobiologiya (Eng transl) 55: 418–421

    Google Scholar 

  • Krasiľnikova EN and KondraÅ¥eva EN (1987) Growth of Chloroflexus aurantiacus under anaerobic conditions in the dark and the metabolism of organic substrates. Mikrobiologiya (Eng transl) 56: 281–285

    Google Scholar 

  • Laakmann-Ditges G and Klemme J-H (1986) Occurrence of two L-threonine (L-serine) dehydratases in the thermophile Chloroflexus aurantiacus. Arch Microbiol 144: 219–221

    Article  CAS  Google Scholar 

  • Laakmann-Ditges G and Klemme J-H (1988) Amino acid metabolism in the thermophilic phototroph, Chloroflexus aurantiacus: properties and metabolic role of two L-threonine (L-serine) dehydratases. Arch Microbiol 149: 249–254

    Article  CAS  Google Scholar 

  • Larsen M, Mack EE, and Pierson BK (1991) Mesophilic Chloroflexus-like organisms from marine and hypersaline environments. VII International Symposium on Photosynthetic Prokaryotes, Amherst, MA, USA. Abstract 169B

    Google Scholar 

  • Mack EE and Pierson BK (1988) Preliminary characterization of a temperate marine member of the Chloroflexaceae. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (ed) Green Photosynthetic Bacteria, pp 237–241. Plenum Publ. Corp., New York

    Google Scholar 

  • Madigan MT and Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, Photosynthetic, gliding bacterium. J Bacteriol 122: 782–784

    CAS  PubMed  Google Scholar 

  • Madigan MT and Brock TD (1977a) CO2 fixation in photosynthetically-grown Chloroflexus aurantiacus. FEMS Microbiol Lett 1: 301–304

    Article  CAS  Google Scholar 

  • Madigan MT and Brock TD (1977b) Adaption by hot spring phototrophs to reduced light intensities. Arch Microbiol 113: 111–120

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Petersen SR and Brock TD (1974) Nutritional studies on Chloroflexus, a filamentous photosynthetic, gliding bacterium. Arch Microbiol 100: 97–103

    Article  CAS  Google Scholar 

  • Norgaard E, SirevÃ¥g R and Eliassen KA (1983) Evidence for the occurrence of sym-homospermidine in green phototrophic bacteria. FEMS Microbiol Lett 20: 159–161

    Article  CAS  Google Scholar 

  • Nozawa T and Madigan MT (1991) Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidum. J. Biochem 110: 588–594

    CAS  PubMed  Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus. J Bacteriol 174: 5021–5026

    CAS  PubMed  Google Scholar 

  • Oelze J. and Fuller RC (1983) Temperature dependence of growth and membrane-bound activities of Chloroflexus aurantiacus energy metabolism. J Bacteriol 155: 90–96

    CAS  PubMed  Google Scholar 

  • Oelze J and Fuller RC (1987) Growth rate and control of development of photosynthetic apparatus in Chloroflexus aurantiacus. Arch Microbiol 148: 132–136

    Article  CAS  Google Scholar 

  • Oelze J and Söntgerath B (1992) Differentiation of the photosynthetic apparatus of Chloroflexus aurantiacus depending on growth with different amino acids. Arch Microbiol 157: 141–147

    CAS  Google Scholar 

  • Oelze J, Jürgens UJ and Ventura S (1991) Amino acid consumption by Chloroflexus aurantiacus in batch and continuous cultures. Arch Microbiol 156: 266–269

    Article  CAS  Google Scholar 

  • Oh-hama T, Santander PJ, Stolowich NJ and Scott AI (1991) Bacteriochlorophyll c formation via the C5 pathway of 5-aminolevulinic acid synthesis in Chloroflexus aurantiacus. FEBS Lett 281: 173–176

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA and Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. System Appl Microbiol 9: 47–53

    CAS  Google Scholar 

  • Palmisano AC, Cronin SE, D’Amelio ED, Munoz E and Des Marais DJ (1989) Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico. In: Cohen Y and Rosenberg E. (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Amer Soc Microbiol, pp 138–152. Washington, DC

    Google Scholar 

  • Pfennig N (1989) Multicellular filamentous green bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JG (ed) Bergey’s Manual of Systematic Bacteriology. Vol 3 (p. 1697). Williams & Wilkins, Baltimore

    Google Scholar 

  • Pierson BK (1994) The emergence, diversification and role of photosynthetic eubacteria. In: Bengston S (ed) Early Life on Earth, Nobel Symp. No. 84, pp 161–180. Columbia University Press, New York

    Google Scholar 

  • Pierson BK and Castenholz RW (1971) Bacteriochlorophylls in gliding filamentous prokaryotes of hot springs. Nature 233: 25–27

    CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24

    CAS  PubMed  Google Scholar 

  • Pierson BK and Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100: 283–305

    CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1992) The family Chloroflexaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer KH (eds) The Prokaryotes. 2nd ed, pp 3754–3774. Springer-Verlag, New York

    Google Scholar 

  • Pierson BK, Thornber JP and Seftor REB (1983) Partial purification, subunit structure and thermal stability of the photochemical reaction center of the thermophilic green bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 723: 322–326

    CAS  Google Scholar 

  • Pierson BK, Giovannoni SJ and Castenholz RW (1984a) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47: 576–584

    CAS  PubMed  Google Scholar 

  • Pierson BK, Keith LM and Leovy JG (1984b) Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus. J Bacteriol 159: 222–227

    CAS  PubMed  Google Scholar 

  • Pierson BK, Giovannoni SJ, Stahl DA and Castenholz RW (1985) Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142: 164–167

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Sands VM and Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Envir Microbiol 56: 2327–2340

    CAS  Google Scholar 

  • Pierson BK, Mitchell HK and Ruff-Roberts AL (1993) Chloroflexus aurantiacus and ultraviolet radiation: implications for Archean shallow-water stromatolites. Origins of Life and Evolution of the Biosphere 23: 243–260

    Article  Google Scholar 

  • Pierson BK, Valdez D, Larsen M, Morgan E and Mack EE (1994) Chloroflexus-like organisms from non-thermal environments: distribution and diversity. Photosynth Res, 41: 35–52

    CAS  Google Scholar 

  • Pivovarova TA and Gorlenko VM (1977) Fine structure of Chloroflexus aurantiacus var. mesophilus (Nom. prof.) grown in light under aerobic and anaerobic conditions. Mikrobiologiya (Eng transl) 46: 276–282

    Google Scholar 

  • Ratanakhanokchai K, Kaneko J, Kamio Y and Izaki K (1992) Purification and properties of a maltotetraose-and maltotriose-producing amylase from Chloroflexus aurantiacus. Appl Envir Microbiol 58: 2490–2494

    CAS  Google Scholar 

  • Revsbech NP and Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48: 270–275

    CAS  PubMed  Google Scholar 

  • Schmidt K, Maarzahl M. and Mayer F (1980) Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl. Arch Microbiol 127: 87–97

    CAS  Google Scholar 

  • Serebryakova LT and Gogotov IN (1991) Inhibition of the hydrogenases of green bacteria by gaseous compounds. Biochemistry (Eng transl) 56: 171–175

    Google Scholar 

  • Serebryakova LT, Zorin NA, Gogotov IN and Keppen OI (1989) Hydrogenase activity of the thermophilic green bacterium Chloroflexus aurantiacus. Mikrobiologiya (Eng transl) 58: 424–428

    Google Scholar 

  • Serebryakova LT, Zorin NA and Gogotov IN (1990) Purification and properties of the hydrogenase of the green nonsulfur bacterium Chloroflexus aurantiacus. Biochemistry (Engtransl) 55: 277–283

    Google Scholar 

  • SirevÃ¥g R and Castenholz RW (1979) Aspects of carbon metabolism in Chloroflexus. Arch Microbiol 120: 151–153

    Google Scholar 

  • Speelmans G, Hillenga D, Poolman B and Konings WN (1993) Application of thermostable reaction centers from Chloroflexus aurantiacus as a proton motive force generating system. Biochim Biophys Acta 1142: 269–276

    CAS  Google Scholar 

  • Sprague SG, Staehelin LA, DiBartolomeis MJ and Fuller RC (1981a) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031

    CAS  PubMed  Google Scholar 

  • Sprague SG, Staehelin LA and Fuller RC (1981b) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1032–1039

    CAS  PubMed  Google Scholar 

  • Stolz JF (1983) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I methods of in situ study of the laminated sediments. Precambrian Res 20: 479–492

    Article  Google Scholar 

  • Stolz JF (1990) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSystems 23: 345–357

    Article  CAS  PubMed  Google Scholar 

  • Strauss G and Fuchs G (1993) Enzymes of a novel autotrophic fixation CO2 pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. FEBS Eur J Biochem 215: 633–643

    CAS  Google Scholar 

  • Strauss G, Eisenreich W, Bacher A and Fuchs G (1992) 13C-NMR study of autotrophic CO2 fixation path ways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus. Eur J Biochem 205: 853–866

    Article  CAS  PubMed  Google Scholar 

  • Stupperich E, Eisinger H-J and Schurr S (1990) Corrinoids in anaerobic bacteria. FEMS Microbiol Rev 87: 355–359

    CAS  Google Scholar 

  • Swanson KL and Smith KM (1990) Biosynthesis of bacteriochlorophyll-c via the glutamate C-5 pathway in Chloroflexus aurantiacus, pp 1696–1697. J Chem Soc, Chem Commun

    Google Scholar 

  • Theroux SJ, Redlinger TE, Fuller RC and Robinson SJ (1990) Gene encoding the 5.7-kilodalton chlorosome protein of Chloroflexus aurantiacus: regulated message levels and a predicted carboxy-terminal protein extension. J Bacteriol 172: 4497–4504

    CAS  PubMed  Google Scholar 

  • Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding, filamentous, phototrophic ‘green’ bacteria. Intl J Syst Bacteriol 26: 74–75

    Google Scholar 

  • Van Den Eynde H, Van De Peer Y, Perry J and De Wachter R (1990) 5SrRNA sequences of representatives of the genera Chlorobium, Prosthecochloris, Thermomicrobium, Cytophaga, Flavobacterium, Flexibacter and Saprospira and a discussion of the evolution of eubacteria in general. J Gen Microbiol 136: 11–18

    PubMed  Google Scholar 

  • Ward DM, Beck E, Revsbech NP, Sandbeck KA and Winfrey MR (1984) Decomposition of hot spring microbial mats. In: Cohen Y, Castenholz RW and Halvorson HO (ed) Microbial Mats: Stromatolites, pp 191–214. Alan R. Liss, Inc., New York

    Google Scholar 

  • Weller R, Bateson MM, Heimbuch BK, Kopczynski, Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58: 3964–3969

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Woese CR, Mandelco L, Yang D, Gherna R and Madigan MT (1990) The case for relationship of flavobacteria and their relatives to the green sulfur bacteria. System Appl Microbiol 13: 258–262

    CAS  Google Scholar 

  • Yanyushin MF (1988) Isolation and characterization of F1-ATPase from the green nonsulfur photosynthesizing bacterium Chloroflexus aurantiacus. Biochemistry (Eng transl) 53: 1120–1127

    Google Scholar 

  • Yanyushin MF (1991) ATP synthase of the green nonsulfur photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry (Eng transl) 56: 786–793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

We dedicate this chapter to William R. Sistron (deceased September, 1993) whose ideas and discussions contributed in many important ways to the discovery and characterization of the BChl-containing filamentous bacteria.

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pierson, B.K., Castenholz, R.W. (1995). Taxonomy and Physiology of Filamentous Anoxygenic Phototrophs. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics