Skip to main content

The Recombination Dynamics of the Radical Pair P+H in External Magnetic and Electric Fields

  • Chapter
Anoxygenic Photosynthetic Bacteria

Summary

When electron transfer to the primary quinone is blocked, the radical pair P+H (P: primary donor, H: bacteriopheophytin at the A-branch) recombines on the 10 ns time scale either to the ground state P or, after hyperfine-induced singlet-triplet-mixing, to the triplet state 3P*. An external magnetic field hinders singlettriplet-mixing, thus reducing the yield of 3P* and slowing the recombination of P+H. Magnetic field dependent measurements of the recombination dynamics allow the determination of the recombination rates ks and kT and the exchange interaction J. From these parameters free energies, electronic matrix elements and reorganization energies relevant for the fast charge separation and slow charge recombination processes in the reaction center can be determined. In many cases, recombination data constitute the sole experimental access to such parameters, which constitute the basis for the theoretical treatment of electron transfer processes.

In this review, results obtained on quinone-depleted reaction centers of Rhodobacter sphaeroides, Rhodobacter capsulatus and Chloroflexus aurantiacus are discussed in the context of (i) the similarity of reaction centers from different organisms, (ii) the mechanism of primary charge separation, (iii) the distinction between structural and energetic effects of genetic alterations of the reaction center, and (iv) the effects of an external electric field, which shifts the energy of the charge separated states. Furthermore, different recombination dynamics observed in transient absorption and delayed fluorescence reveal an inhomogeneous broadening of radical pair energies in the reaction center. This energetic broadening allows us to understand a variety of phenomena: (a) the observed multiphasic electron transfer kinetics, (b) the unexpectedly weak electric field effects on the fluorescence and (c) the discrepancies of energetics determined by delayed fluorescence and transient absorbance measurements. As a consequence, absorption measurements are better suited to determine the average of the energetic distribution of the radical pair P+H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    CAS  PubMed  Google Scholar 

  • Aumeier G (1994) Rekombinationsdynamik des spinkorrelierten Radikalpaars P+H in photosynthetischen Reaktionszentren. Eine Gegenüberstellung von Simulationen und Messungen an Rb. sphaeroides und Photosystem II. PhD-Thesis. Technische Universität München

    Google Scholar 

  • Becker M, Nagarajan V, Middendorf D, Parson WW, Martin JE and Blankenship RE (1991) Temperature dependence of the initial electron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1057: 299–312

    CAS  Google Scholar 

  • Bixon M and Jortner J (1989) Activationless and pseudoactivationless primary electron transfer in photosynthetic reaction centers. Chem Phys Lett 159: 17–20

    Article  CAS  Google Scholar 

  • Bixon M and Jortner J (1991) Non-Arrhenius temperature dependence of electron-transfer rates. J Phys Chem 95: 1941–1944

    Article  CAS  Google Scholar 

  • Bixon M, Jortner J, Michel-Beyerle ME, Ogrodnik A and Lersch W (1987) The role of the accessory bacteriochlorophyll in reaction centers of photosynthetic bacteria: Intermediate acceptor in the primary electron transfer? Chem Phys Lett 140: 626–630

    Article  CAS  Google Scholar 

  • Bixon M, Michel-Beyerle ME and Jortner J (1988) Formation dynamics, decay kinetics and singlet-triplet splitting of the (bacteriochlorophyll dimer)+ (bacteriopheophytin) radical air in bacterial photosynthesis. Isr J Chem 28: 155–168

    CAS  Google Scholar 

  • Bixon M, Jortner J, Michel-Beyerle ME and Ogrodnik A (1989) A superexchange mechanism for the primary charge separation in photosynthetic reaction centers. Biochim Biophys Acta 977: 273–286

    CAS  Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1991) On the mechanism of the primary charge separation in bacterial photosynthesis. Biochim Biophys Acta 1056: 301–315

    CAS  Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1993) The singlettriplet splitting of the primary radical pair in the bacterial photosynthetic reaction center. Zeitschr Phys Chem 180: 193–208

    CAS  Google Scholar 

  • Blankenship RE, Schaafsma TJ and Parson WW (1977) Magnetic field effects on radical pair intermediates in bacterial photosynthesis. Biochim Biophys Acta 461: 297–305

    CAS  PubMed  Google Scholar 

  • Blankenship RE, Feick R, Bruce BD, Kirmaier C, Holten D and Fuller RC (1983) Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. J Cell Biochem 22: 251–261

    Article  CAS  PubMed  Google Scholar 

  • Bowman MK, Budil DE, Closs GL, Kostka AG, Wraight CA and Norris JR (1981) Magnetic resonance spectroscopy of the primary state, pf, of bacterial photosynthesis. Proc Natl Acad Sci USA 78: 3305–3307

    CAS  Google Scholar 

  • Boxer SG, Chidsey CED and Roelofs MG (1982a) Anisotropic magnetic interactions in the primary radical ion-pair of photosynthetic reaction centers. Proc Natl Acad Sci USA 79: 4632–4636

    CAS  Google Scholar 

  • Boxer SG, Chidsey CED and Roelofs MG (1982b) Use of large magnetic fields to probe photoinduced electron-transfer reactions: An example from photosynthetic reaction centers. J Am Chem Soc 104: 1452–1454

    CAS  Google Scholar 

  • Boxer SG, Chidsey CED and Roelofs MG (1982c) Dependence of the yield of a radical-pair reaction in the solid state on orientation in a magnetic field. J Am Chem Soc 104: 2674–2675

    CAS  Google Scholar 

  • Boxer SG, Chidsey CED and Roelofs MG (1983) Magnetic field effects on reaction yields in the solid state: An example from photosynthetic reaction centers. Ann Rev Phys Chem 34: 389–417

    Article  CAS  Google Scholar 

  • Boxer SG, Franzen S, Lao K, Lockhart DJ, Stanley R, Steffen M and Stocker JW (1992) Electric field effects on the quantum yields and kinetics of fluorescence and transient intermediates in bacterial reaction centers. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center II, pp 271–282. Plenum Press, New York

    Google Scholar 

  • Breton J, Martin JL, Migus A, Antonetti A and Orszag A (1986) Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. In: Fleming GR and Siegmann AE (eds) Ultrafast Phenomena V, pp 393–397. Springer-Verlag, Berlin

    Google Scholar 

  • Bruce BD, Fuller RC and Blankenship RE (1982) Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci USA 79: 6532–6536

    CAS  Google Scholar 

  • Budil DE, Kolaczkowski SV and Norris JR (1987) The temperature dependence of electron back-transfer from the primary radical pair of bacterial photosynthesis. In: Biggins J (ed) Progress in Photosynthesis Research, Vol I, pp 25–28. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Chan C-K, DiMagno TJ, Chen LX-Q, Norris JR and Fleming GR (1991) Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci USA 88: 11202–11206

    CAS  PubMed  Google Scholar 

  • Chang C-H, Tiede D, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rhodobacter sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Article  CAS  PubMed  Google Scholar 

  • Chidsey CED, Roelofs MG and Boxer SG (1980) The effect of large magnetic fields and the g-factor difference on the triplet population in photosynthetic reaction centers. Chem Phys Lett 74: 113–118

    Article  CAS  Google Scholar 

  • Chidsey CED, Kirmaier C, Holten D and Boxer SG (1984) Magnetic field dependence of radical-pair decay kinetics and molecular triplet quantum yield in quinone-depleted reaction centers. Biochim Biophys Acta 766: 424–437

    CAS  Google Scholar 

  • Chidsey CED, Takiff L, Goldstein RA and Boxer SG (1985) Effect of magnetic fields on triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair. Proc Natl Acad Sci USA 82: 6850–6854

    CAS  Google Scholar 

  • Cogdell RJ, Monger TG and Parson WW (1975) Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim Biophys Acta 408: 189–199

    CAS  PubMed  Google Scholar 

  • Coleman WJ, Youvan DC, Aumeier W, Eberl U, Volk M, Lang E, Siegl J, Heckmann R, Lersch W, Ogrodnik A and Michel-Beyerle ME (1990a) How conclusive is mutagenic replacement of Trp M250 in photosynthetic reaction centers? In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 153–156. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Coleman WJ, Bylina EJ, Aumeier W, Siegl J, Eberl U, Heckmann R, Ogrodnik A, Michel-Beyerle ME and Youvan DC (1990b) Influence of mutagenic replacement of tryptophan M250 on electron transfer rates involving primary quinone in reaction centers of Rb. capsulatus. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria, pp 273–282. Springer-Verlag, Berlin

    Google Scholar 

  • Davydov AS (1965) Quantum Mechanics. Pergamon Press, Oxford

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  CAS  PubMed  Google Scholar 

  • Du M, Rosenthal SJ, Xie X, DiMagno TJ, Schmidt M, Hanson DK, Schiffer M, Norris JR and Fleming GR (1992) Femtosecond spontaneous emission studies of reaction centers from photosynthetic bacteria. Proc Natl Acad Sci USA 89: 8517–8521

    CAS  PubMed  Google Scholar 

  • Dutton PL, Leigh JS and Reed DW (1973) Primary events in the photosynthetic reaction centre from Rhodopseudomonas spheroides strain R26: Triplet and oxidized states of bacteriochlorophyll and the identification of the primary electron acceptor. Biochim Biophys Acta 292: 654–664

    CAS  PubMed  Google Scholar 

  • Eberl U, Gilbert M, Keupp W, Langenbacher T, Siegl J, Sinning I, Ogrodnik A, Robles SJ, Breton J, Youvan DC and Michel-Beyerle ME (1992) Fast internal conversion of the primary donor in modified reaction centers. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center II. Structure, Spectroscopy and Dynamics, pp 253–260. Plenum Press, New York

    Google Scholar 

  • Feher G, Arno TR, Okamura M Y (1988) The effect of an electric field on the charge recombination rate of D+QA →DQA in reaction centers of Rhodobacter sphaeroides R-26. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center, Structure and Dynamics, pp 271–287. Plenum Press, New York

    Google Scholar 

  • Feick R, Martin JL, Breton J, Volk M, Scheidel G, Langenbacher T, Urbano C, Ogrodnik A and Michel-Beyerle ME (1990) Biexponential charge separation and monoexponential decay of P+H in reaction centers of Chloroflexus aurantiacus. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria, pp 181–188. Springer-Verlag, Berlin

    Google Scholar 

  • Finkele U, Lauterwasser C, Zinth W, Gray KA and Oesterhelt D (1990) Role of tyrosine M210 in the initial charge separation of reaction centers of Rb. sphaeroides. Biochemistry 29: 8517–8521

    Article  CAS  PubMed  Google Scholar 

  • Fleming GR, Martin JL and Breton J (1988) Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333: 190–192

    Article  CAS  Google Scholar 

  • Frank HA and Violette CA (1989) Monomeric bacteriochlorophyll is required for the triplet energy transfer between the primary donor and the carotenoid in photosynthetic bacterial reaction centers. Biochim Biophys Acta 976: 222–232

    CAS  PubMed  Google Scholar 

  • Frankevich EL, Pristupa AI and Lesin VI (1977) Magnetic resonance of short-lived triplet exciton pairs detected by fluorescence modulation at room temperature. Chem Phys Lett 47: 304–308

    Article  CAS  Google Scholar 

  • Franzen S, Goldstein RF and Boxer SG (1990) Electric field modulation of electron transfer reaction rates in isotropic systems: long-distance charge recombination in photosynthetic reaction centers. J Phys Chem 94: 5135–5149

    Article  CAS  Google Scholar 

  • Franzen S, Lao K-Q, Stanley B and Boxer SG (1992) Electricfield-induced quantum yield failure of the primary charge separation step of photosynthetic reaction centers. Biophys J 61: A153

    Google Scholar 

  • Frauenfelder H, Parak F and Young RD (1988) Conformational substates in proteins. Ann Rev Biophys Biophys Chem 17: 451–479

    Article  CAS  Google Scholar 

  • Gao J-L, Shopes RJ and Wraight CA (1990) Heterogeneity of kinetics and electron transfer equilibria in the bacteriopheophytin and quinone electron acceptors ofreaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 1056: 259–272

    Google Scholar 

  • Goldstein RA and Boxer SG (1987) Effects of nuclear spin polarization on reaction dynamics in photosynthetic bacterial reaction centers. Biophys J 51: 937–946

    CAS  Google Scholar 

  • Goldstein RA and Boxer SG (1989a) The effect of very high magnetic fields on the delayed fluorescence from oriented bacterial reaction centers. Biochim Biophys Acta 977: 70–77

    CAS  Google Scholar 

  • Goldstein RA and Boxer SG (1989b) The effect of very high magnetic fields on the reaction dynamics in bacterial reaction centers: Implications for the reaction mechanism. Biochim Biophys Acta 977: 78–86

    CAS  Google Scholar 

  • Goldstein RA, Takiff L and Boxer SG (1988) Energetics of initial charge separation in bacterial photosynthesis: The triplet decay rate in very high magnetic fields. Biochim Biophys Acta 934: 253–263

    CAS  Google Scholar 

  • Haberkorn R and Michel-Beyerle ME (1977) Mechanism of triplet formation in photosynthesis via hyperfine interaction. FEBS Lett 75: 5–7

    Article  CAS  PubMed  Google Scholar 

  • Haberkorn R and Michel-Beyerle ME (1979) On the mechanism of magnetic field effects in bacterial photosynthesis. Biophys J 26: 489–498

    CAS  PubMed  Google Scholar 

  • Haberkorn R, Michel-Beyerle ME and Marcus R (1979) On spinexchange and electron-transfer rates in bacterial photosynthesis. Proc Natl Acad Sci USA 76: 4185–1188

    CAS  Google Scholar 

  • Hamm P, Gray KA, Oesterhelt D, Feick R, Scheer H and Zinth W (1993) Subpicosecond emission studies of bacterial reaction centers. Biochim Biophys Acta 1142: 99–105

    CAS  Google Scholar 

  • Hoff AJ (1981) Magnetic field effects on photosynthetic reactions. Quart Rev Biophys 14: 599–665

    CAS  Google Scholar 

  • Hoff AJ (1986) Magnetic interactions between photosynthetic reactants. Photochem Photobiol 43: 727–745

    CAS  Google Scholar 

  • Hoff AJ, Rademaker H, van Grondelle R and Duysens LNM (1977) On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 460: 547–554

    CAS  PubMed  Google Scholar 

  • Holten D, Windsor MW, Parson WW and Thornber JP (1978) Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 501: 112–126

    CAS  PubMed  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem Phys Lett 160: 1–7

    Article  CAS  Google Scholar 

  • Hörber JKH, Göbel W, Ogrodnik A, Michel-Beyerle ME and Cogdell RJ (1986) Time-resolved measurements of fluorescence from reaction centers of Rhodobacter sphaeroides R26. FEBS Lett 198: 273–278

    Google Scholar 

  • Hore PJ, Riley DJ, Semlyen JJ, Zwanenburg G and Hoff AJ (1993) Analysis of anisotropic electron spin polarization in the photosynthetic bacterium Rhodospirillum rubrum. Evidence that the sign of the exchange interaction in the primary radical pair is positive. Biochim Biophys Acta 1141: 221–230

    CAS  Google Scholar 

  • Jortner J (1980a) Dynamics of the primary events in bacterial photosynthesis. J Am Chem Soc 102: 6676–6686

    Article  CAS  Google Scholar 

  • Jortner J (1980b) Dynamics of electron transfer in bacterial photosynthesis. Biochim Biophys Acta 594: 193–230

    CAS  PubMed  Google Scholar 

  • Kaufmann KJ, Dutton PL, Netzel TL, Leigh JS and Rentzepis PM (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science 188: 1301–1304

    CAS  Google Scholar 

  • Kirmaier C and Holten D (1990) An inhomogeneous distribution of bacterial reaction centers underlies the observed temperature and detection wavelength dependence of the rates of the primary electron transfer reactions. Proc Natl Acad Sci USA 87: 3552–3556

    CAS  PubMed  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1984) Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: Evidence for lightinduced structural changes. Biochemistry 23: 5780–5786

    Article  CAS  PubMed  Google Scholar 

  • Komiya H, Yeates TO, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: Symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci USA 85: 9012–9016

    CAS  PubMed  Google Scholar 

  • Lang E (1991) Zeitaufgelöste magnetische Resonanzspektroskopie am Radikalpaar P+H derbakteriellen Photosynthese mil optischem Nachweis über die Rekombinationsausbeuten. PhD-Thesis. Technische Universität München

    Google Scholar 

  • Lang E, Lersch W, Tappermann P, Coleman WJ, Youvan DC, Feick R and Michel-Beyerle ME (1990) High power RYDMR spectra of P+H in reaction centers of photosynthetic bacteria. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 137–140. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lauterwasser C, Finkele U, Scheer H and Zinth W (1991) Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides. Chem Phys Lett 183: 471–477

    Article  CAS  Google Scholar 

  • Lersch W (1987) Magnetische Resonanz an kurzlebigen Radikalpaaren mit optischem Nachweis über die Rekombinationsausbeuten. PhD-Thesis. Technische Universität München

    Google Scholar 

  • Lersch W and Michel-Beyerle ME (1983) Magnetic field effects on the recombination of radical ions in reaction centers of photosynthetic bacteria. Chem Phys 78: 115–126

    Article  CAS  Google Scholar 

  • Lersch W and Michel-Beyerle ME (1989) RYDMR-Theory and applications. In: Hoff AJ (ed) Advanced EPR, Applications in Biology and Biochemistry, pp 685–705. Elsevier, Amsterdam

    Google Scholar 

  • Lersch W, Ogrodnik A and Michel-Beyerle ME (1982) On the influence of microwaves and static magnetic fields on the recombination of radical ions in reaction centers of photosynthetic bacteria. Z Naturforsch 37a: 1454–1456

    CAS  Google Scholar 

  • Lersch W, Lendzian F, Lang E, Feick R, Möbius K and Michel-Beyerle ME (1989) High-Power RYDMR with a loop-gap resonator. J Magn Res 82: 143–149

    CAS  Google Scholar 

  • Lersch W, Lang E, Feick R, Coleman WJ, Youvan DC and Michel-Beyerle ME (1990) Determination of the exchange interaction in the primary radical ion pair in reaction centers. In: Jortner J and Pullman B (eds) Perspectives in Photosynthesis, pp 81–90. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Lockhart DJ, Goldstein RF and Boxer SG (1988) Structurebased analysis of the initial electron transfer step in bacterial photosynthesis: Electric field induced fluorescence anisotropy. J Chem Phys 89: 1408–1415

    Article  CAS  Google Scholar 

  • Lockhart D J, Kirmaier C, Holten D and Boxer SG (1990) Electric field effects on the initial electron-transfer kinetics in bacterial photosynthetic reaction centers. J Phys Chem 94: 6987–6995

    Article  CAS  Google Scholar 

  • Lyle PA, Kolaczkowski SV and Small GJ (1993) Photochemical hole-burned spectra of protonated and deuterated reaction centers of Rhodobacter sphaeroides. J Phys Chem 97: 6924–6933

    Article  CAS  Google Scholar 

  • Marcus RA (1987) Superexchange versus an intermediate BChl mechanism in reaction centers of photosynthetic bacteria. Chem Phys Lett 133: 471–77

    Article  CAS  Google Scholar 

  • Marcus RA (1988) An internal consistency test and its implications for the initial steps in bacterial photosynthesis. Chem Phys Lett 146: 13–22

    Article  CAS  Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811: 265–322

    CAS  Google Scholar 

  • Martin JL, Breton J, Hoff A J, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodobacter sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ±.2 ps. Proc Natl Acad Sci USA 83: 957–961

    CAS  Google Scholar 

  • McElroy JD, Feher G and Mauzerall DC (1972) Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g=2.0026) with that of a bacteriochlorophyll radical. Biochim Biophys Acta 267: 363–374

    CAS  PubMed  Google Scholar 

  • Michel-Beyerle ME and Ogrodnik A (1990) Views on primary charge separation in reaction centers of photosynthetic bacteria. In: Baltscheffsky M. (ed.) Progress in Photosynthesis Research, Vol I, pp 19–26. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Michel-Beyerle ME, Haberkorn R, Bube W, Steffens E, Schröder H, Neusser HJ, Schlag EW and Seidlitz H (1976) Magnetic field modulation of geminate recombination of radical ions in a polar solvent. Chem Phys 17: 139–145

    Article  CAS  Google Scholar 

  • Michel-Beyerle ME, Scheer H, Seidlitz H, Tempus D and Haberkorn R (1979) Time-resolved magnetic field effect on triplet formation in photosynthetic reaction centers of Rhodobacter sphaeroides R-26. FEBS Lett 100: 9–12

    Article  CAS  PubMed  Google Scholar 

  • Michel-Beyerle ME, Scheer H, Seidlitz H and Tempus D (1980) Magnetic field effect on triplets and radical ions in reaction centers of photosynthetic bacteria. FEBS Lett 110: 129–132

    Article  CAS  Google Scholar 

  • Michel-Beyerle ME, Bixon M and Jortner J (1988a) Interrelationship between primary electron transfer dynamics and magnetic interactions in photosynthetic reaction centers. Chem Phys Lett 151: 188–194

    Article  CAS  Google Scholar 

  • Michel-Beyerle ME, Plato M, Deisenhofer J, Michel H, Bixon M and Jortner J (1988b) Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 932: 52–70

    CAS  Google Scholar 

  • Moehl KW, Lous EJ and Hoff AJ (1985) Low-power, low-field RYDMAR of the primary radical pair in photosynthesis. Chem Phys Lett 121: 22–27

    Article  CAS  Google Scholar 

  • Nagarajan V, Parson WW, Davis D and Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32: 12324–12336

    Article  CAS  PubMed  Google Scholar 

  • Norris JR, Bowman MK, Budil DE, Tang J, Wraight CA and Closs GL (1982) Magnetic characterization of the primary state of bacterial photosynthesis. Proc Natl Acad Sci USA 79: 5532–5536

    CAS  Google Scholar 

  • Norris JR, Budil DE, Tiede DM, Tang J, Kolaczkowski SV, Chang CH and Schiffer M (1987a) Relating structure to function in bacterial photoreaction centers. In: Biggins J (ed) Progress in Photosynthesis Research, Vol I, pp 363–369. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Norris JR, Lin CP and Budil DE (1987b) Magnetic resonance of ultrafast chemical reactions. J Chem Soc, Faraday Trans 1,83: 13–27

    Google Scholar 

  • Ogrodnik A (1990) The free energy difference between the excited primary donor lP* and the radical pair state P+H in reaction centers of Rhodobacter sphaeroides. Biochim Biophys Acta 1020: 65–71

    CAS  Google Scholar 

  • Ogrodnik A (1993) Electric field effects on steady state and time resolved fluorescence from photosynthetic reaction centers. Mol Cryst Liq Cryst 230: 35–56

    CAS  Google Scholar 

  • Ogrodnik A and Michel-Beyerle ME (1992) Testing primary charge separation in photosynthetic reaction centers with external electric fields. In: Kochanski E (ed) Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules. Experiment and Theory, pp 349–373. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ogrodnik A, Krüger HW, Orthuber H, Haberkorn R and Michel-Beyerle ME (1982) Recombination dynamics in bacterial photosynthetic reaction centers. Biophys J 39: 91–99

    CAS  PubMed  Google Scholar 

  • Ogrodnik A, Lersch W, Michel-Beyerle ME, Deisenhofer J and Michel H (1985) Spin dipolar interactions of radical pairs in photosynthetic reaction centers. In: Michel-Beyerle ME (ed) Antennas and Reaction Centers of Photosynthetic Bacteria: Structure, Interaction and Dynamics, pp 198–206. Springer-Verlag, Berlin

    Google Scholar 

  • Ogrodnik A, Remy-Richter N and Michel-Beyerle ME (1987) Observation of activationless recombination in reaction centers of Rhodobacter sphaeroides. A new key to the primary electrontransfer mechanism. Chem Phys Lett 135: 576–581

    Article  CAS  Google Scholar 

  • Dgrodnik A, Volk M, Letterer R, Feick R and Michel-Beyerle ME (1988) Determination of free energies in reaction centers of Rb. sphaeroides. Biochim Biophys Acta 936: 361–371

    Google Scholar 

  • Ogrodnik A, Eberl U, Heckmann R, Kappl M, Feick R and Michel-Beyerle ME (1991) Excitation dichroism of electric field modulated fluorescence yield for the identification of primary electron acceptor in photosynthetic reaction center. J Phys Chem 95: 2036–2041

    Article  CAS  Google Scholar 

  • Ogrodnik A, Langenbacher T, Bieser G, Siegl J, Eberl U, Volk M and Michel-Beyerle ME (1992) Electric field-induced decrease of quantum yield of charge separation in photosynthetic reaction centers. Chem Phys Lett 198: 653–658

    Article  CAS  Google Scholar 

  • Ogrodnik A, Keupp W, Volk M, Aumeier G and Michel-Beyerle ME (1994) Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination dynamics of P+H when detected in delayed emission and in absorption. J Phys Chem 98: 3432–3439

    Article  CAS  Google Scholar 

  • Okamura MY, Isaacson RA and Feher G (1975) Primary acceptor in bacterial photosynthesis: Obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 72: 3491–3495

    CAS  PubMed  Google Scholar 

  • Okamura MY, Isaacson RA and Feher G (1979) Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodobacter sphaeroides. Biochim Biophys Acta 546: 394–417

    CAS  PubMed  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Zolotarev AS, Shmukler BE, Zargarov A A, Kutuzov MA, Telezhinskaya IN and Levina NB (1988a) Photosynthetic reaction centre of Chloroflexus aurantiacus. I. Primary structure of L-subunit. FEBS Lett 231: 237–242

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya IN, Levina NB and Zolotarev AS (1988b) Photosynthetic reaction centre of Chloroflexus aurantiacus. Primary structure of M-subunit. FEBS Lett 232: 364–368

    CAS  PubMed  Google Scholar 

  • Parot P, Thiery J and Vermeglio A (1987) Charge recombination at low temperature in photosynthetic bacteria reaction centers: evidence for two conformational states. Biochim Biophys Acta 893: 534–543

    CAS  Google Scholar 

  • Parson WW and Cogdell RJ (1975) The primary photochemical reaction of bacterial photosynthesis. Biochim Biophys Acta 416: 105–149

    CAS  PubMed  Google Scholar 

  • Parson WW, Clayton RK and Cogdell RJ (1975) Excited states of photosynthetic reaction centers at low redox potentials. Biochim Biophys Acta 387: 265–278

    CAS  PubMed  Google Scholar 

  • Parson WW, Chu Z-T and Warshel A (1990a) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251–272

    CAS  PubMed  Google Scholar 

  • Parson WW, Nagarajan V, Gaul D, Schenck CC, Chu Z-T and Warshel A (1990b) Electrostatic effects on the speed and directionality of electron transfer in bacterial reaction centers: The special role of tyrosine M-208. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria, pp 239–249. Springer-Verlag, Berlin

    Google Scholar 

  • Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl. Proc Natl Acad Sci USA 80: 80–84

    CAS  Google Scholar 

  • Plato M, Möbius K, Michel-Beyerle ME, Bixon M and Jortner J (1988) Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis. J Am Chem Soc 110: 7279–7285

    Article  CAS  Google Scholar 

  • Plato M, Michel-Beyerle ME, Bixon M and Jortner J (1989) On the role of tryptophan as a superexchange mediator for quinone reduction in photosynthetic reaction centers. FEBS Lett 249: 70–74

    Article  CAS  Google Scholar 

  • Popovic ZD, Kovacs GJ, Vincett PS, Alegria G and Dutton PL (1986) Electric field dependence of the quantum yield in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 851: 38–18

    CAS  Google Scholar 

  • Prince RC and Youvan DC (1987) Isolation and spectroscopic properties of photochemical reaction centers from Rhodobacter capsulatus. Biochim Biophys Acta 890: 286–291

    CAS  Google Scholar 

  • Reddy NRS, Lyle PA and Small GJ (1992) Applications of spectral hole burning spectroscopies to antenna and reaction center complexes. Photosynth Res 31, 167–194

    Article  CAS  Google Scholar 

  • Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci USA 72: 2251–2255

    CAS  PubMed  Google Scholar 

  • Roelofs MG, Chidsey CED and Boxer SG (1982) Contributions of spin-spin interactions to the magnetic field dependence of the triplet quantum yield in photosynthetic reaction centers. Chem Phys Lett 87: 582–588

    Article  CAS  Google Scholar 

  • Scheidel G (1989) Rekombinationsdynamik des spinkorrelierten Radikalpaars P+BPh in nativen und mutagenetisch veränderten Reaktionszentren photosynthetischer Bakterien. Diploma Thesis. Technische Universität München

    Google Scholar 

  • Schenck CC, Blankenship RE and Parson WW (1982) Radical-pair decay kinetics, triplet yields and delayed fluorescence from bacterial reaction centers. Biochim Biophys Acta 680: 44–59

    CAS  Google Scholar 

  • Schenck CC, Mathis P and Lutz M (1984) Triplet formation and triplet decay in reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Photochem Photobiol 39: 407–417

    CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nägele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1994) Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem Phys Lett 223: 116–120

    Article  CAS  Google Scholar 

  • Schulten Z and Schulten K (1977) The generation, diffusion, spin motion, and recombination of radical pairs in solution in the nanosecond time domain. J Chem Phys 66: 4616–4634

    Article  CAS  Google Scholar 

  • Schulten K and Wolynes PG (1978) Semiclassical description of electron spin motion in radicals including the effect of electron hopping. J Chem Phys 68: 3292–3297

    Article  CAS  Google Scholar 

  • Sebban P and Barbet JC (1984) Intermediate states between P+ and Pf in bacterial reaction centers, as detected by the fluorescence kinetics. FEBS Lett 165: 107–110

    Article  CAS  Google Scholar 

  • Sebban P and Wraight CA (1989) Heterogeneity of the P+QA recombination kinetics in reaction centers from Rhodopseudomonas viridis: the effects of pH and temperature. Biochim Biophys Acta 974: 54–65

    CAS  Google Scholar 

  • Shiozawa J A, Lottspeich F, Oesterhelt D and Feick R (1989) The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem 180: 75–84

    Article  CAS  PubMed  Google Scholar 

  • Shuvalov VA and Parson WW (1981) Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc Natl Acad Sci USA 78: 957–961

    CAS  Google Scholar 

  • Stilz HU, Finkele U, Holzapfel W, Lauterwasser C, Zinth W and Oesterhelt D (1990) Site-directed mutagenesis of threonine M222 and tryptophan M252 in the photosynthetic reaction center of Rb. sphaeroides. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria, pp 265–271. Springer-Verlag, Berlin

    Google Scholar 

  • Takiff L and Boxer SG (1988) Phosphorescence from the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Biochim Biophys Acta 932: 325–334

    CAS  Google Scholar 

  • Thurnauer MC, Katz JJ and Norris JR (1975) The triplet state in bacterial photosynthesis: Possible mechanisms of the primary photo-act. Proc Natl Acad Sci USA 72: 3270–3274

    CAS  Google Scholar 

  • Uphaus RA, Norris JR and Katz JJ (1974) Triplet states in photosynthesis. Biochem Biophys Res Commun 61: 1057–1063

    Article  CAS  PubMed  Google Scholar 

  • van der Est A, Bittl R, Abresch EC, Lubitz W and Stehlik D (1993) Transient EPR spectroscopy of perdeuterated Zn-substituted reaction centres of Rhodobacter sphaeroides R-26. Chem Phys Lett 212: 561–568

    Google Scholar 

  • Volk M (1991) Die Rekombinationsdynamik des intermediären Radikalpaares P+H in photosynthetischen Reaktionszentren. PhD-Thesis. Technische Universität München

    Google Scholar 

  • Volk M, Scheidel G, Ogrodnik A, Feick R and Michel-Beyerle ME (1991) High quantum yield of charge separation in reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1058: 217–224

    CAS  Google Scholar 

  • Volk M, Aumeier G, Häberle T, Ogrodnik A, Feick R and Michel-Beyerle ME (1992) Sensitive analysis of the occupancy of the quinone binding site at the active branch of photosynthetic reaction centers. Biochim Biophys Acta 1102: 253–259

    CAS  Google Scholar 

  • Volk M, Neumann W, Ogrodnik A, Gray KA, Oesterhelt D and Michel-Beyerle ME (1993a) The effect of site-directed mutagenesis at position M210 on the energies of the charge separated states P+B and P+B in reaction centers of Rb. sphaeroides. Biophys J 64: A18

    Google Scholar 

  • Volk M, Häberle T, Feick R, Ogrodnik A and Michel-Beyerle ME (1993b) What can be learned from the singlet-triplet splitting of the radical pair P+H in the photosynthetic reaction center? Conclusions from electric field effects on the P+H recombination dynamics. J Phys Chem 97: 9831–9836

    Article  CAS  Google Scholar 

  • Volk M, Gilbert M, Rousseau G, Richter M, Ogrodnik A and Michel-Beyerle ME (1993c) Similarity of primary radical pair recombination in Photosystem II and bacterial reaction centers. FEBS Lett 336: 357–362

    Article  CAS  PubMed  Google Scholar 

  • Vos MH, Lambry J-C, Robles SJ, Youvan DC, Breton J and Martin J-L (1991) Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc Natl Acad Sci USA 88: 8885–8889

    CAS  PubMed  Google Scholar 

  • Vos MH, Lambry J-C, Robles SJ, Youvan DC, Breton J and Martin J-L (1992) Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K. Proc Natl Acad Sci USA 89: 613–617

    CAS  PubMed  Google Scholar 

  • Wang Z, Pearlstein RM, Jia Y, Fleming GR and Norris JR (1993) Inhomogeneous electron transfer kinetics in reaction centers of bacterial photosynthesis. Chem Phys 176: 421–425

    CAS  Google Scholar 

  • Wasielewski MR, Bock CH, Bowman MK and Norris JR (1983a) Nanosecond time-resolved magnetic resonance of the primary radical pair state PF of bacterial photosynthesis. J Am Chem Soc 105: 2903–2904

    Article  CAS  Google Scholar 

  • Wasielewski MR, Bock CH, Bowman MK and Norris JR (1983b) Controlling the duration of photosynthetic charge separation with microwave radiation. Nature 303: 520–522

    Article  CAS  Google Scholar 

  • Wasielewski MR, Norris JR and Bowman MK (1984) Time-domain magnetic resonance studies of short-lived radical pairs in liquid solution. Faraday Discuss Chem Soc 78: 279–288

    Article  Google Scholar 

  • Werner HJ, Schulten K and Weller A (1978) Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis. Biochim Biophys Acta 502: 255–268

    CAS  PubMed  Google Scholar 

  • Windsor MW and Menzel R (1989) Effect of pressure on the 12 ns charge recombination step in reduced bacterial reaction centers of Rhodobacter sphaeroides R-26. Chem Phys Lett 164: 143–150

    Article  CAS  Google Scholar 

  • Woodbury NW and Parson W W (1984) Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 767: 345–361

    CAS  PubMed  Google Scholar 

  • Woodbury NW, Becker M, Middendorf D and Parson WW (1985) Picosecond kinetics of the initial photochemical electrontransfer reaction in bacterial photosynthetic reaction centers. Biochemistry 24: 7516–7521

    Article  CAS  PubMed  Google Scholar 

  • Woodbury NW, Parson WW, Gunner MR, Prince RC and Dutton PL (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphtoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta 851: 6–22

    CAS  PubMed  Google Scholar 

  • Wraight CA and Clayton RK (1973) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centers of Rhodobacter sphaeroides. Biochim Biophys Acta 333: 246–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Volk, M., Ogrodnik, A., Michel-Beyerle, ME. (1995). The Recombination Dynamics of the Radical Pair P+H in External Magnetic and Electric Fields. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_27

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics