Skip to main content

Proton-Coupled Electron Transfer Reactions of QB in Reaction Centers from Photosynthetic Bacteria

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

The reaction center from purple bacteria mediates the initial steps of a light driven proton pump, coupling light induced electron transfer to proton uptake. The key steps in this reaction involve the two electron reduction of the secondary quinone QB with the concomitant uptake of 2 protons:

$$ 2H^ + + 2e^ - + Q_B \to Q_B H_2$$

Recent advances in studies of reaction centers from purple bacteria have provided insight into the pathway of proton transfer into the RC and the mechanism of coupling proton and electron transfer reactions. Studies using site directed mutagenesis have identified 3 residues near QB that are important for proton transfer in RCs from Rb. sphaeroides. The mutation of Ser L223 and Asp L213 to Ala and Asn, respectively, block proton transfer and the second electron transfer involved in QB reduction. Mutation of Glu L212 to Gln blocks proton transfer associated with QB reduction but 2 electron reduction of QB still occurs. The model explaining these results is that Ser L223 and Asp L213 are involved in the proton transfer pathway for uptake of the first proton which is bound prior to the second electron transfer, whereas Glu L212 is involved in the pathway for the second proton which is bound after the second electron transfer. These results clearly show that specific residues play important roles in proton transfer. However other functionally active mutant RCs have been obtained in which either Asp L213, Ser L223 or Glu L212 were absent indicating that the pathways for proton transfer are not unique. The structure of the RC near the QB site suggests the involvement of water molecules in addition to protein residues in the proton transfer chain to QB. In addition, negatively charged residues near QB increase the proton coupled electron transfer rate by stabilizing a proton in the interior of the RC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JP, Feher G, Yeates TO, Rees DC, Deisenhofer J, Michel H and Huber R (1986) Structural Homology of reaction centers from Rb. sphaeroides and Rp. viridis as determined by X-ray diffraction. Proc Natl Acad Sci USA 83: 8589–8593

    CAS  PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1988) Structure of the reaction center from Rb. sphaeroides R-26: Protein-cofactor (quinones and Fe2+) interactions. Proc Natl Acad Sci USA 85: 8487–8491

    CAS  PubMed  Google Scholar 

  • Axelrod HL, Abresch E, Paddock ML, Okamura MY, Feher G and Rees DC (1995) X-ray crystallographic analysis of a site-directed proton transfer mutant Ser-L223 → Gly of the bacterial RC from Rb. sphaeroides. Biophys J 68: A247

    Google Scholar 

  • Baciou L, Sinning I and Sebban P (1991) Study of QB stabilization in herbicide-resistant mutants from the purple bacterium Rhodopseudomonas viridis. Biochemistry 30: 9110–9116

    CAS  PubMed  Google Scholar 

  • Belanger G, Berard J, Corriveau P and Gingras G (1988) The structural genes coding for the L and M subunits of Rhodospirillum rubrum photoreaction center. J Biol Chem 263: 7632–7638

    CAS  PubMed  Google Scholar 

  • Beroza P, Fredkin DR, Okamura MY and Feher G (1992) Proton transfer pathways in the reaction center of Rhodobacter sphaeroides: A computational study. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center II, 363–374. Plenum Press, New York

    Google Scholar 

  • Breton J and Vermeglio A (1988) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics Plenum, New York

    Google Scholar 

  • Breton J and Vermeglio A, Eds (1992) The Photosynthetic Bacterial Reaction Center II; Structure Spectroscopy and Dynamics, Vol 237. Plenum Press, New York

    Google Scholar 

  • Breton J, Thibodeau DL, Berthomieu C, Mantele W, Vermeglio A and Nabedryk E (1991) Probing the primary quinone environment in photosynthetic bacterial reaction centers by light induced FTIR difference spectroscopy. FEBS Lett 278: 257–260

    Article  CAS  PubMed  Google Scholar 

  • Bylina EJ and Wong R (1992) Analysis of spontaneous herbicide resistant revertants derived from Rhodobacter capsulatus in which serine L223 of the reaction center is replaced with alanine. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 369–372. Dordrecht: Kluwer Academic Publ.

    Google Scholar 

  • Bylina EJ, Jovine RVM and Youvan DC (1989) A genetic system for rapidly assessing herbicides that compete for the quinone binding site of photosynthetic reaction centers. Biotechnology 7: 69–74

    CAS  Google Scholar 

  • Cao JC, Vermaas WFJ and Govindjee (1991) Arginine residues in the D2 polypeptide may stabilize bicarbonate binding in photosystem II of Synechocystis sp. PCC6803 Biochim Biophys Acta 1059: 171–180

    CAS  PubMed  Google Scholar 

  • Chang C-H, Tiede D, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rb. sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Article  CAS  PubMed  Google Scholar 

  • Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G and Rees DC (1994) Biochemistry 33: 4584–4593

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA and Knaff DB (1990) Energy Transduction in Biological Membranes Springer-Verlag, New York

    Google Scholar 

  • Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. EMBO J 8: 2149–2170

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex: Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  CAS  PubMed  Google Scholar 

  • Diner BA, Petrouleas V and Wendoloski JJ (1991) The iron-quinone electron acceptor complex of photosystem II. Physiol Plant 81: 423–36

    Article  CAS  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: Cofactors and protein-cofactor interactions. Structure 2: 925–936

    Article  CAS  PubMed  Google Scholar 

  • Erickson JM, Rahire M, Bennoun P, Delepelaire P, Diner B and Rochaix J-D (1984) Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32 kilodalton protein of photosystem II. Proc Natl Acad Sci USA 81: 3617–3621

    CAS  Google Scholar 

  • Feher G, Isaacson RA, Okamura MY and Lubitz W (1985) ENDOR of semiquinones in reaction centers from Rhodopseudomonas sphaeroides. In: Michel-Beyerle ME (eds) Antennas and Reaction Centers of Photosynthetic Bacteria, pp 174–189. Springer-Verlag, Berlin

    Google Scholar 

  • Feher G, Allen JP, Okamura MY and Rees DC (1989) Structure and function of bacterial photosynthetic reaction centers. Nature 339: 111–116

    Article  CAS  Google Scholar 

  • Feher G, McPherson PH, Paddock M, Rongey S, Schoenfeld M and Okamura MY (1990) Protonation of quinones in reaction centers from Rb. sphaeroides, In: Baltscheffsky M (ed.) Current Research in Photosynthesis I, pp 39–46. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Feher G, Paddock ML, Rongey SH and Okamura MY (1992) Proton transfer pathways in photosynthetic reaction centers studied by site-directed mutagenesis. In: Pullman A, Jortner J and Pullman B (eds) Membrane Proteins: Structures, Interactions and Models, pp 481–495. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Govindjee and van Rensen JJS (1993) Photosystem II reaction centers and bicarbonate In: Deisenhofer J and Norris JK (eds) The Photosynthetic Reaction Center, pp 357–389. Academic Press, New York

    Google Scholar 

  • Graige MS, Paddock ML, Labahn A, Bruce JM, Feher G and Okamura MY (1995) The mechanism of proton-coupled electron transfer to QB in reaction centers from Rb. sphaeroides. Biophys J 68: A246

    Google Scholar 

  • Gunner MR (1993) Calculations of proton uptake coupled to electron transfer in bacterial photosynthetic reaction centers. Biophys J 64: A375

    Google Scholar 

  • Gunner MR and Honig B (1992) Calculations of proton uptake in Rhodobacter sphaeroides RCs. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center II, 403–410. Plenum Press, New York

    Google Scholar 

  • Hales BJ and Case EE (1981) Immobilized radicals IV. Biological semiquinone anions and neutral semiquinones. Biochim Biophys Acta 637: 291–302

    CAS  Google Scholar 

  • Hanson DK and Schiffer M (1995) Electrostatic effects and proton conduction in bacterial reaction center protein. Biophys J 68: A246

    Google Scholar 

  • Hanson DK, Baciou L, Tiede DM, Nance SL, Schiffer M and Sebban P (1992a) In bacterial reaction centers, protons can diffuse to the secondary quinone by alternative pathways. Biochim Biophys Acta 1102: 260–265

    CAS  PubMed  Google Scholar 

  • Hanson DK, Nance SL and Schiffer M (1992b) Second site mutation at M43 (Asn → Asp) compensates for the loss of two acidic residues in the QB site of the reaction center. Photosynth Res 32: 147–153

    Article  CAS  Google Scholar 

  • Hanson DK, Tiede DM, Nance SL, Chang CH and Schiffer M (1993) Site-specific and compensatory mutations imply unexpected pathways for proton delivery to the QB binding site of the photosynthetic reaction center. Proc Natl Acad Sci USA 90: 8929–8933

    CAS  PubMed  Google Scholar 

  • Hienerwadel R, Nabedryk E, Paddock ML, Rongey SH, Okamura MY, Mäntele W and Breton J (1992) Proton transfer mutants of Rb. sphaeroides: Characterization of reaction centers by infrared spectroscopy. In: Murata N (ed.) Research in Photosynthesis, Vol I, pp 437–440. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Hirschberg J and McIntosh L (1983) Molecular basis of herbicide resistance in Aramanthus hybridus. Science 222: 1346–1349

    CAS  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1984) Electron transfer in reaction centers of Rb. sphaeroides. I. Determination of the charge recombination pathway of D+QAQB and free energy relations between QAQB and QAQB. Biochim Biophys Acta 766: 126–140

    CAS  PubMed  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1985) Electron transfer in reaction centers from Rb. sphaeroides. II Free energy and kinetic relations between the acceptor states QA QB and QAQB2−. Biochim Biophys Acta 809: 291–310

    CAS  Google Scholar 

  • Leibl W, Sinning I, Ewald G, Michel H and Breton J (1993) Evidence that serine L223 is involved in the proton transfer pathway to QB in the photosynthetic reaction center of Rhodopseudomonas viridis. Biochemistry 32: 19581964

    Article  Google Scholar 

  • Liebetanz R, Hornberger U and Drews G (1991) Organization of the genes coding for the reaction center L-subunit and M-subunit and B870 antenna polypeptides alpha and polypeptide beta from the aerobic photosynthetic bacterium Erythrobacter species OCH114. Molec Microbiol 5: 1459–1468

    CAS  Google Scholar 

  • Lubitz W, Abresch EC, Debus RJ, Isaacson RA, Okamura MY and Feher G (1985) Electron nuclear double resonance of semiquinone in reaction centers of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 808: 464–469

    CAS  PubMed  Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transfer in chemistry and biology. Biochim. Biophys. Acta 811: 265–322

    CAS  Google Scholar 

  • Maróti P and Wraight CA (1988) Flash-induced H+ binding by bacterial photosynthetic reaction centers: Influences of the redox states of the acceptor quinones and primary donor. Biochim Biophys Acta 934: 329–347

    Google Scholar 

  • Maróti P and Wraight CA (1990) Kinetic correlation between H+ binding, semiquinone disappearance and quinol formation in reaction centers of Rb. sphaeroides. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1, pp 165–168. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Maróti P, Hanson DK, Baciou L, Schiffer M and Sebban P (1994) Proton conduction within the reaction centers of Rhodobacter capsulatus: The electrostatic role of the protein. Proc Natl Acad Sci 91: 5617–5621

    PubMed  Google Scholar 

  • McPherson PH, Okamura MY and Feher G (1988) Light induced proton uptake by photosynthetic reaction centers from Rhodobacter sphaeroides R-26.1 Protonation of the one-electron states D+QA, D+QB, and DQAQB, Biochim Biophys Acta. 934: 348–368

    CAS  Google Scholar 

  • McPherson PH, Okamura MY and Feher G (1990) Electron transfer from the reaction center of Rb. sphaeroides to the quinone pool: Doubly reduced QB leaves the reaction center. Biochim Biophys Acta 1016: 289–292

    CAS  Google Scholar 

  • McPherson PH, Rongey SH, Paddock ML, Feher G and Okamura MY (1991) The rate of electron transfer QAQB → QAQB in RCs from Rb. sphaeroides in which Asp-L213 is replaced with Asn. Biophys J 59: 142a

    Google Scholar 

  • McPherson PH, Okamura MY and Feher G (1993) Light-induced proton uptake by photosynthetic reaction centers from Rhodobacter sphaeroides R-26.1 II. Protonation of the state DQAQB2. Biochim Biophys Acta 1144: 309–324

    CAS  PubMed  Google Scholar 

  • McPherson PH, Schönfeld M, Paddock ML, Okamura MY and Feher G (1994) Protonation and free energy changes associated with formation of QAH2 in native and Glu-L212 → Gln mutant reaction centers from Rhodobacter sphaeroides. Biochemistry 33: 1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Michel H, Weyer KA, Gruenberg H, Dunger I, Oesterhelt D and Lottspeich F (1986) The ‘light’ and ‘medium’ subunits of the photosynthetic reaction center from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J 5: 1149–1158

    CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and proton transfer by a chemi-osmotic type ofmechanism. Nature, 191: 144–148

    CAS  PubMed  Google Scholar 

  • Morrison LE, Schelhorn JE, Cotton TM, Bering CL and Loach PA (1982) Electrochemical and spectral properties of ubiquinone and synthetic analogs: relevance to bacterial photosynthesis. In: Trumpower BL (ed) Function of Quinones in Energy Conserving Systems, 35–58. Academic Press, New York

    Google Scholar 

  • Oettmeier W (1992) Herbicides of photosystem II. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 349–408. Elsevier Science Pub., Amsterdam

    Google Scholar 

  • Okamura MY and Feher G (1992) Proton transfer in reaction centers from photosynthetic bacteria. Ann Rev Biochem 61: 861–96

    CAS  PubMed  Google Scholar 

  • Okamura MY, Debus RJ, Kleinfeld D and Feher G (1982) Quinone binding sites in reaction centers from photosynthetic bacteria. In: Trumpower B (ed) Function of Quinones in Energy Conserving Systems, 299–317. Academic Press, New York

    Google Scholar 

  • Okamura MY, Paddock ML, McPherson PH, Rongey S and Feher G (1992) Proton transfer in bacterial reaction center: Second site mutations Asn M44 → Asp or Arg M233 → Cys restore photosynthetic competence to Asp L213 → Asn Mutants in RCs from Rb. sphaeroides. In: Murata N (ed) Research in Photosynthesis, vol. I, pp 349–356. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Otto H, Marti T, Holz M, Mogi T, Lindau M, Khorana HG and Heyn MP (1989) Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Proc Natl Acad Sci USA 86: 9228–9232

    CAS  PubMed  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya IN, Levina NB and Zolotarev AS (1988a) Photosynthetic reaction center of Chloroflexus aurantiacus: primary structure of the M subunit. FEBS Lett 232: 364–368

    CAS  PubMed  Google Scholar 

  • Ovchinnikov YA, Abdulaev NG, Zolotarev AS, Shmukler BE, Zargarov AA, Kutuzov MA, Telezhinskaya IN and Levina NB (1988b) Photosynthetic reaction center of Chloroflexus aurantiacus: Primary structure of the L subunit. FEBS Lett 231: 237–42

    Article  CAS  PubMed  Google Scholar 

  • Paddock ML, Rongey SH, Feher G and Okamura MY (1989) Pathway of proton transfer in bacterial reaction centers: Replacement of Glu 212 in the L subunit inhibits quinone (QB) turnover. Proc Natl Acad Sci (USA) 86: 6602–6606

    CAS  Google Scholar 

  • Paddock ML, Feher G and Okamura MY (1990a) pH dependence of charge recombination in RCs from Rb. sphaeroides in which Glu-L212 is replaced with Asp Biophys J 57: 569a

    Google Scholar 

  • Paddock ML, McPherson PH, Feher G and Okamura MY (1990b) Pathway of proton transfer in bacterial reaction centers: Replacement of serine-L223 by alanine inhibits electron and proton transfers associated with the reduction of quinone to dihydroquinone. Proc Natl Acad Sci (USA) 87: 6803–6807

    CAS  Google Scholar 

  • Paddock ML, Feher G and Okamura MY (1991) Reaction centers from three herbicide resistant mutants of Rhodobacter sphaeroides 2.4.1: Kinetics of electron transfer reactions Photosynth Res 27: 109–119

    Article  CAS  Google Scholar 

  • Paddock ML, Juth A, Feher G and Okamura MY (1992) Electrostatic effects of replacing Asp-L210 with Asn in bacterial RCs from Rb. sphaeroides. Biophys J 61: 153a

    Google Scholar 

  • Paddock ML, Rongey SH, McPherson PH, Juth A, Feher G and Okamura MY (1994) Pathway of proton transfer in bacterial reaction centers: The Role of Asp-L213 in proton transfers associated with the reduction of quinone to dihydroquinone. Biochemistry 33: 734–745

    Article  CAS  PubMed  Google Scholar 

  • Paddock ML, Feher G and Okamura MY (1995a) Suggested role of an internal water molecule in proton transfer in a Ser-L223 → Gly site-directed mutant reaction center from Rb. sphaeroides. Biophys J 68: A246

    Google Scholar 

  • Paddock ML, Abresch E, Isaacson RA, Feher G and Okamura MY (1995b) The role of hydrogen bonded protons in the photochemical reduction of QB to QBH2 in reaction centers of Rb. sphaeroides. Biophys J 68: A246

    Google Scholar 

  • Parson W W (1978) Quinones as secondary acceptors. In: Clayton RK and Sistrom WR (ed) The Photosynthetic Bacteria, 455–469. Plenum Press, New York

    Google Scholar 

  • Pay A, Smith MA, Nagy F and Marton L (1988) Sequence of the psbA gene from wild type and triazin resistant Nicotiana plumbaginfolea. Nucleic Acids Res 16: 8176

    CAS  PubMed  Google Scholar 

  • Prince RC and Dutton PL (1978) Protonation and the reducing potential of the primary electron acceptor. In: Clayton RK and Sistrom WR (ed) The Photosynthetic Bacteria, 439–453. Plenum Press, New York

    Google Scholar 

  • Rashin AA, Iofin M and Honig B (1986) Internal cavities and buried waters in globular proteins. Biochemistry 25: 3619–3629

    Article  CAS  PubMed  Google Scholar 

  • Rongey S, Paddock ML, Juth AL, McPherson PH, Feher G and Okamura MY (1991) Pathway of proton transfer in bacterial RCs from Rb. sphaeroides: Replacement of AspL213 with Asn inhibits electron and proton transfer to the secondary quinone. Biophys J 59: 142a

    Google Scholar 

  • Rongey SH, Paddock ML, Feher G and Okamura MY (1993) Pathway of proton transfer in bacterial reaction centers: second site mutation Asn-M44 → Asp restores electron and proton transfer in reaction centers from the photosynthetically deficient Asp-L213 → Asn mutant of Rb. sphaeroides. Proc Natl Acad Sci USA 90: 1325–1329

    CAS  PubMed  Google Scholar 

  • Rongey SH, Juth AL, Paddock ML, Feher G and Okamura MY (1995) Importance of a carboxylic acid at H173 for protoncoupled electron transfer in RCs of Rb. sphaeroides. Biophys J 68: A247

    Google Scholar 

  • Rutherford AW and Evans MCW (1980) Direct measurement of the redox potential of the primary and secondary quinone electron acceptors in Rb. sphaeroides (wild type) by EPR spectrometry. FEBS Lett 110: 257–261

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Shigematsu Y and Yamada Y (1988) Selection of an atrazine-resistant tobacco cell line having a mutant psba gene. Mol Gen Genet 214: 358–360

    Article  CAS  PubMed  Google Scholar 

  • Schiffer M, Chan C-K, Chang C-H, DiMagno TJ, Fleming GR, Nance S, Norris J, Snyder S, Thurnauer M, Tiede DM and Hanson DK (1992) Study of reaction center function by analysis of the effects of site-specific and compensatory mutations. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center II, pp 351–361. Plenum Press, New York

    Google Scholar 

  • Shinkarev VP, Takahashi E and Wraight CA (1993) Flashinduced electric potential generation in wild type and L212EQ mutant chromatophores of Rhodobacter sphaeroides: QBH2 is not released from L212EQ mutant reaction centers. Biochim Biophys Acta 1142: 214–216

    CAS  Google Scholar 

  • Swallow AJ (1982) Physical chemistry of semiquinones. In: Trumpower BL (eds) Function of Quinones in Energy Conserving Systems, pp 59–72. Academic Press, New York

    Google Scholar 

  • Takahashi E and Wraight CA (1990) A crucial role for Asp L213 in the proton transfer pathway to the secondary quinone of reaction centers from Rhodobacter sphaeroides. Biochim Biophys Acta 1020: 107–111

    CAS  Google Scholar 

  • Takahashi E and Wraight CA (1991) Small weak acids stimulate proton transfer events in site-directed mutants of the two ionizable residues, Glu L212 and Asp L213, in the QB-binding site of Rhodobacter sphaeroides reaction center. FEBS Letters 283: 140–144

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Maróti P and Wraight CA, (1992) Coupled proton and electron transfer pathways in the acceptor quyinone complex of reaction centers from Rb. sphaeroides. In: Muller A, Ratajczak H, Junge W and Diemann E (eds) Electron and Proton Transfer in Chemistry and Biology, pp 219–236. Elsevier Publ., Amsterdam

    Google Scholar 

  • Takahashi E and Wraight CA (1992) Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues Glu L212 and Asp L213 in the QB binding site. Biochemistry 31: 855–866

    CAS  PubMed  Google Scholar 

  • Takahashi E and Wraight CA (1994) Molecular genetic manipulation and characterization of mutant photosynthetic reaction centers from purple non-sulfur bacteria. In: Barber J (ed) Advances in Molecular and Cell Biology: Molecular Processes in Photosynthesis, pp 197–251. JAI Press, Greenwich

    Google Scholar 

  • Taoka S and Crofts AR (1990) Two electron gate in triazine resistant and susceptible Aramanthus hybridus. In: Baltscheffsky M (ed.) Current Research in Photosynthesis, Vol I, pp 547–550 Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tiede DM and Hanson DK (1992) Protein relaxation following quinone reduction in Rb. capsulatus: Detection of likely protonation linked optical absorbance changes of the chromophores. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center, Vol II, pp 341–350. Plenum Press, New York

    Google Scholar 

  • Tittor J, Soell C, Oesterhelt D, Butt HJ and Steiner M (1989) A defective proton pump, point-mutated bacteriorhodopsin Asp 96 → Asn is fully reactivated by azide. EMBO J 8: 3477–3482

    CAS  PubMed  Google Scholar 

  • Vermeglio A (1977) Secondary electron transfer in reaction centers of Rhodopseudomonas sphaeroides: Out of phase periodicity of 2 for the formation of ubisemiquinone and fully reduced ubiquinone. Biochim Biophys Acta 459: 516–524

    CAS  PubMed  Google Scholar 

  • Vermeglio A and Clayton RK (1977) Kinetics of electron transfer between the primary and the secondary electron acceptor in reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 461: 159–165

    CAS  PubMed  Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI and Feher G (1983) Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80: 6505–6509

    CAS  Google Scholar 

  • Williams JC, Steiner LA, Feher G and Simon MI (1984) Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci US A 81: 7303–7307

    CAS  Google Scholar 

  • Wraight CA (1977) Electron acceptors of photosynthetic bacterial reaction centers: Direct observation of oscillatory behavior suggesting two closely equivalent ubiquinones. Biochim Biophys Acta 459: 525–531

    CAS  PubMed  Google Scholar 

  • Wraight CA (1979) Electron acceptors of bacterial photosynthetic reaction centers II H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim Biophys Acta 548: 309–327

    CAS  PubMed  Google Scholar 

  • Wraight CA (1982) The involvement of stable semiquinones in the two electron gates of plant and bacterial photosystems. In: Trumpower BL (ed) Function of Quinones in Energy Conserving Systems, pp 181–197. Academic Press, New York

    Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna, and flanking polypeptides from Rb. capsulatus. Cell 37: 949–957

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Okamura, M.Y., Feher, G. (1995). Proton-Coupled Electron Transfer Reactions of QB in Reaction Centers from Photosynthetic Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_26

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics