Skip to main content

Antenna Complexes from Green Photosynthetic Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Green photosynthetic bacteria contain antenna complexes known as chlorosomes. These complexes are appressed to the cytoplasmic side of the inner cell membrane and function to absorb light and transfer the energy to the photochemical reaction center, where photochemical energy storage takes place. Chlorosomes differ from all other known photosynthetic antenna complexes in that the geometrical arrangement of pigments is determined primarily by pigment-pigment interactions instead of pigment-protein interactions. The functional role of the proteins found in chlorosomes is not well understood. The bacteriochlorophyll c, d or e pigments found in chlorosomes form large oligomers with characteristic spectral properties significantly perturbed from those exhibited by monomeric pigments. Because of their close spatial interaction, the pigments are thought to be strongly coupled electronically, and many of the optical properties result from exciton interactions.

In addition to chlorosomes, the green sulfur bacteria contain another unique antenna complex known as the bacteriochlorophyll a protein, or the Fenna-Matthews-Olson (FMO) protein. This complex was the first pigment-containing photosynthetic complex to have its high resolution structure determined. It has been intensely studied by spectroscopic and theoretical methods.

This review summarizes existing knowledge on the chemical composition and properties of chlorosomes, the evidence for the oligomeric nature of chlorosome pigment organization and proposed structures for the oligomers, the properties of and possible functions of chlorosome proteins, the kinetics and mechanisms of energy transfer in chlorosomes, and the structure and spectroscopic properties of the FMO protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden RG, Lin SH and Blankenship RE (1992) Theory of spectroscopy and energy transfer of oligomeric pigments in chlorosome antennas of green photosynthetic bacteria. J Lumin 51: 51–66

    CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH and Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp. 77–104. CRC Press, Boca Raton

    Google Scholar 

  • Asada K, Kanematsu S and Uchida K (1977) Superoxide dismutases in photosynthetic organisms: Absence of the cuprozinc enzyme in eukaryotic algae. Arch Biochem Biophys 179: 243–256

    Article  CAS  PubMed  Google Scholar 

  • Betti JA, Blankenship RE, Natarajan LV, Dickinson LC and Fuller RC (1982) Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 680:, 194–201

    CAS  Google Scholar 

  • Beyer P, Falk H and Kleining H (1983) Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities. Arch Microbiol 134: 60–63

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Brune DC, Freeman JM, King GH, McManus JD, Nozawa T and Wittmershaus BP (1988a) Energy trapping and electron transfer in Chloroflexus aurantiacus In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp. 57–69. Plenum Press, New York

    Google Scholar 

  • Blankenship RE, Brune DC and Wittmershaus BP (1988b) Chlorosome antennas in green photosynthetic bacteria. In: Stevens SE Jr and Bryant DA (eds) Light Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp. 32–64. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Blankenship RE, Wang J, Causgrove TP and Brune DC (1990) Efficiency and kinetics of energy transfer in chlorosome antennas from green photosynthetic bacteria. In: Baltscheffsky M (ed) Current Research In Photosynthesis, Vol II, pp. 17–24. Kluwer, Dordrecht

    Google Scholar 

  • Blankenship RE, Cheng P, Causgrove TP, Brune DC, Wang SHH, Choh JU and Wang J (1993) Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol 57: 103–107

    CAS  PubMed  Google Scholar 

  • Bobe FW, Pfennig N, Swanson KL and Smith KM (1990) Red shift of absorption maxima in Chlorobiaceae through enzymic methylation of their antenna bacteriochlorophylls. Biochemistry 29: 4340–4348

    Article  CAS  PubMed  Google Scholar 

  • Borisov AYu, Fetisova ZG and Godik VI (1977) Energy transfer in photoactive complexes obtained from green bacterium Chlorobium limicola. Biochim Biophys Acta 461: 500–509

    CAS  PubMed  Google Scholar 

  • Broch-Due M and Ormerod JG (1978) Isolation of a BChl c mutant from Chlorobium with BChl d by cultivation at low light intensities. FEMS Microbiol Lett 3: 305–308

    Article  Google Scholar 

  • Brune DC, King GH, Infosino A, Steiner T, Thewalt MLW and Blankenship RE (1987a) Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus. Biochemistry 26: 8652–8658

    CAS  PubMed  Google Scholar 

  • Brune DC, Nozawa T and Blankenship RE (1987b) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26: 8644–8652

    CAS  PubMed  Google Scholar 

  • Brune DC, King GH and Blankenship RE (1988a) Interactions between Bacteriochlorophyll c molecules in oligomers and in chlorosomes of green photosynthetic bacteria. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp. 141–151. Walter de Gruyter, Berlin

    Google Scholar 

  • Brune DC, Blankenship RE and Seely GR (1988b) Fluorescence quantum yields and lifetimes for bacteriochlorophyll c. Photochem Photobiol 47: 759–763

    CAS  PubMed  Google Scholar 

  • Brune DC, Gerola PD and Olson JM (1990) Circular dichroism of green bacterial chlorosomes. Photosynth. Res. 24: 253–263.

    Article  CAS  Google Scholar 

  • Bryant DA (1994) Gene nomenclature recommendations for green photosynthetic bacteria and heliobacteria. Photosynth Res 41: 27–28

    Article  CAS  Google Scholar 

  • Buchanan BB (1992) Carbon dioxide assimilation in oxygenic and anoxygenic photosynthesis. Photosynth Res 33: 147–162

    Article  CAS  Google Scholar 

  • Bystrova MI, Maľgosheva IN and Krasnovskii AA (1979) Study of molecular mechanism of self-assembly of aggregated forms of BChl c. Mol Biol (English Trans) 13: 582–594

    CAS  Google Scholar 

  • Caple MB, Chow H and Strouse CE (1978) Photosynthetic pigments of green sulfur bacteria. J. Biol. Chem. 253: 6730–6737

    CAS  PubMed  Google Scholar 

  • Causgrove TP, Yang S and Struve WS (1988) Polarized pumpprobe spectroscopy of exciton transport in bacteriochlorophyll a-protein from Prosthecochloris aestuarii. J Phys Chem 92: 6790–6795

    CAS  Google Scholar 

  • Causgrove TP, Brune DC, Blankenship RE and Olson JM (1990a) Fluorescence lifetimes of dimers and higher oligomers of bacteriochlorophyll c from Chlorobium limicola. Photosynth Res 25: 1–10

    Article  CAS  Google Scholar 

  • Causgrove TP, Brune DC, Wang J, Wittmershaus BP and Blankenship RE (1990b) Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria. Photosynth Res 26: 39–48

    CAS  Google Scholar 

  • Causgrove TP, Brune DC and Blankenship RE (1992) Förster energy transfer in chlorosomes of green photosynthetic bacteria. J Photochem Photobiol B 15: 171–179

    Article  CAS  PubMed  Google Scholar 

  • Causgrove TP, Cheng P, Brune DC and Blankenship RE (1993) Optical spectroscopy of a highly fluorescent aggregate of bacteriochlorophyll c. J Phys Chem 97: 5519–5524

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Liddell PA, Ma SXC and Blankenship RE (1993) Properties of Zn and Mg methyl bacteriopheophorbide d and their aggregates. Photochem Photobiol 58: 290–295

    CAS  Google Scholar 

  • Chiefari J, Griebenow K, Griebenow N, Balaban TS, Holzwarth AR and Schaffner K (1995) Models for the pigment organization in the chlorosomes of photosynthetic bacteria: Diastereo-selective control of in-vitro bacteriochlorophyll c8 aggregation. J Phys Chem 99: 1357–1365

    CAS  Google Scholar 

  • Chow H-C, Serlin R and Strouse CE (1975) The crystal and molecular structure and absolute configuration of ethyl chlorophyllide dihydrate. J Am Chem Soc 97: 7230–7237

    Article  CAS  Google Scholar 

  • Chung S, Frank G, Zuber H and Bryant DA (1994) Genes encoding two chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynth Res 41: 261–275

    Article  CAS  Google Scholar 

  • Cohen-Bazire G Pfennig N and Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22: 207–225

    Article  CAS  PubMed  Google Scholar 

  • Cruden DL and Stanier RY (1970) Characterization of Chlorobium vesicles and membranes isolated from green bacteria. Arch Mikrobiol 72: 115–34

    Article  CAS  PubMed  Google Scholar 

  • Daurat-Larroque ST, Brew K and Fenna RE (1986) The complete amino acid sequence of a bacteriochlorophyll a-protein from Prosthecochloris aestuarii. J Biol Chem 261: 3607–3615

    CAS  PubMed  Google Scholar 

  • Dracheva S, Williams JC and Blankenship (1992) Sequencing of the FMO-protein from Chlorobium tepidum. In: Murata N (ed), Research in Photosynthesis, Vol I, pp. 53–56. Kluwer, Dordrecht

    Google Scholar 

  • Fages F, Griebenow N, Griebenow K, Holzwarth A and Schafner K (1990) Characterization of light-harvesting pigments of Chloroflexus aurantiacus. Two new chlorophylls: Oleyl (octadec-9-enyl) and cetyl (hexadecanyl) bacteriochlorophyllides-c. J Chem Soc Perkin Trans I, 1990: 2791–2797

    Google Scholar 

  • Feick RG and Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23: 3693–3700

    Article  CAS  Google Scholar 

  • Feick RG, Fitzpatrick M and Fuller RC (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. J Bacteriol 150: 905–15

    CAS  PubMed  Google Scholar 

  • Feiler U, Nitschke W and Michel H (1992) Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers F(A) and F(B) and a bound cytochrome subunit. Biochemistry 31: 2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Feiler U, Albouy D, Lutz M and Robert B (1994) Pigment interactions in chlorosomes of various green bacteria. Photosynth Res 41: 175–180

    Article  CAS  Google Scholar 

  • Fenna RE and Matthews (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258: 573–577

    Article  CAS  Google Scholar 

  • Fenna RE, Matthews BW, Olson JM and Shaw EK (1974) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: Crystallographic evidence for a trimer. J Mol Biol 84: 231–240

    Article  CAS  PubMed  Google Scholar 

  • Fetisova ZG and Borisov AYu (1973) Intrinsic lifetimes of bacterioviridin-660 and chlorophyll a in different solvents. J Photochem 2: 151–159

    CAS  Google Scholar 

  • Fetisova ZG and Borisov AYu (1980a) Fluorescence quantum yield and lifetime of antenna pigments of green bacterium Chlorobium limicola. Stud Biophys 80: 93–96

    CAS  Google Scholar 

  • Fetisova ZG and Borisov AYu (1980b) Picosecond time scale of heterogeneous excitation energy transfer from accessory light-harvesting bacterioviridin antenna to main bacteriochlorophyll a antenna in photoactive pigment-protein complexes obtained from Chlorobium limicola, a green bacterium. FEBS Lett 114: 323–326

    Article  CAS  Google Scholar 

  • Fetisova ZG and Mauring K (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett 307: 371–374

    Article  CAS  PubMed  Google Scholar 

  • Fetisova ZG and Mauring K (1993) Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett 323: 159–162

    Article  CAS  PubMed  Google Scholar 

  • Fetisova ZG, Kharchenko and Abdourakhmanov IA (1986) Strong orientational ordering of the near-infrared transition moment vectors of light-harvesting antenna bacterioviridin in chromatophores of the green photosynthetic bacterium Chlorobium limicola. FEBS Lett, 199: 234–236

    Article  CAS  Google Scholar 

  • Fetisova ZG, Freiberg AM and Timpmann KE (1987) Investigations by picosecond polarized fluorescence spectrochronography of structural aspects of energy transfer in living cells of the green bacterium Chlorobium limicola. FEBS Lett 223: 161–164

    Article  CAS  Google Scholar 

  • Fetisova ZG, Freiberg AM and Timpmann KE (1988) Long-range molecular order as an efficient strategy for light harvesting in photosynthesis. Nature 334: 633–634

    Article  CAS  Google Scholar 

  • Fetisova ZG, Mauring K and Taisova AS (1994) Strongly exciton-coupled BChl e chromophore system in the chlorosomal antenna of intact cells of the green bacterium Chlorobium phaeovibrioides: A spectral hole burning study. Photosynth Res 41: 205–210

    Article  CAS  Google Scholar 

  • Foidl M, Golecki JR and Oelze J (1994) Bacteriochlorophyll c formation and chlorosome development inChloroflexus aurantiacus. Photosynth Res 41: 145–150

    Article  CAS  Google Scholar 

  • Freiberg AM, Timpmann KE and Fetisova ZG (1988) Excitation energy transfer in living cells of the green bacterium Chlorobium limicola studied by picosecond fluorescence spectroscopy. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 81–90. Plenum Press, New York

    Google Scholar 

  • Fuhrmann S, Overmann J, Pfennig N and Fischer U (1993) Influence of vitamin-B12 and light on the formation of chlorosomes in green-colored and brown-colored Chlorobium species. Arch Microbiol 160:193–198

    CAS  Google Scholar 

  • Garnier J, Osguthorpe DJ and Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120: 97–120

    Article  CAS  PubMed  Google Scholar 

  • Gerola PD and Olson JM (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848: 69–76

    CAS  PubMed  Google Scholar 

  • Gerola PD, Højrup P, Knudsen J, Roepstorff P and Olson JM (1988) The bacteriochlorophyll c-binding protein from chlorosomes of Chlorobium limicola f. thiosulfatophilum. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 43–52. Plenum Press, New York

    Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E and Woese, CR (1985) The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6: 152–156

    CAS  Google Scholar 

  • Gillbro, Sandström Ã…, Sundström V and Olson JM (1988) Picosecond energy transfer kinetics in chlorosomes and bacteriochlorophyll a-proteins of Chlorobium limicola. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 91–96. Plenum Press, New York

    Google Scholar 

  • Gloe A and Risch N (1978) Bacteriochlorophyll c a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118: 153–156

    Article  CAS  PubMed  Google Scholar 

  • Gloe A, Pfennig N, Brockmann H and Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102: 103–109

    Article  CAS  PubMed  Google Scholar 

  • Golecki JR and Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148: 236–241

    Article  CAS  Google Scholar 

  • Griebenow K and Holzwarth AR (1989) Pigment organization and energy transfer in green bacteria. I. Isolation of native chlorosomes free of bound bacteriochlorophyll a from Chloroflexus aurantiacus by gel-electrophoretic filtration. Biochim Biophys Acta 973: 235–240

    CAS  Google Scholar 

  • Griebenow K, Holzwarth AR and Schaffner K (1990) The 5.6 kilodalton protein in isolated chlorosomes of Chloroflexus aurantiacus strain Ok-70-fl is a degradation product. Z Naturforsch 45C: 823–828

    Google Scholar 

  • Griebenow K, Holzwarth AR, van Mourik F and van Grondelle (1991a) Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectrum of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl. Biochim Biophys Acta 1058:, 194–202

    CAS  Google Scholar 

  • Griebenow K, Müller MG and Holzwarth AR (1991b) Pigment organization and energy transfer in green bacteria. 3. Picosecond energy transfer kinetics within the B806–866 bacteriochlorophyll a antenna complex isolated from Chloroflexus aurantiacus. Biochim Biophys Acta 1059: 226–232

    CAS  Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801

    Article  CAS  Google Scholar 

  • Halfen LN, Pierson BK and Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Microbiol 82: 240–246

    CAS  Google Scholar 

  • Hawthornthwaite AM and Cogdell RJ (1991) Bacteriochlorophyll-binding proteins. In: Scheer H (ed) Chlorophylls, pp 493–528. CRC Press, Boca Raton

    Google Scholar 

  • Hildebrandt P, Griebenow K, Holzwarth AR and Schaffner K (1991) Resonance Raman spectroscopic evidence for the identity of the bacteriochlorophyll c organization in protein-free and protein-containing chlorosomes from Chloroflexus aurantiacus. Z Naturforsch 46c: 228–232

    Google Scholar 

  • Hildebrandt P, Tamiaki H, Holzwarth AR and Schaffner K (1994) Resonance Raman spectroscopic study of metallochlorin aggregates. Implications for the supramolecular structure in chlorosomal BChl c antennae of green bacteria. J Phys Chem 98: 2192–2197

    Article  CAS  Google Scholar 

  • Hirota M, Moriyama T, Shimada K, Miller M, Olson JM and Matsuura K (1992) High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution. Biochim Biophys Acta 1099: 271–274

    CAS  Google Scholar 

  • Hoff AJ and Amesz J (1991) Visible absorption spectroscopy of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 723–738. CRC Press, Boca Raton

    Google Scholar 

  • Højrup P, Gerola P, Hansen HF, Mikkelsen JM, Shahed AE, Knudsen J, Roepstorff P and Olson JM (1991) The amino acid sequence of a major protein component in the light harvesting complex of the green photosynthetic bacterium Chlorobium limicola f. thiosulfatophilum. Biochim Biophys Acta 1077: 220–224

    PubMed  Google Scholar 

  • Holo H, Broch-Due M and Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143: 94–99

    Article  CAS  Google Scholar 

  • Holzwarth AR and Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modeling study. Photosynth Res 41: 225–233

    Article  CAS  Google Scholar 

  • Holzwarth AR, Griebenow K and Schaffner K (1990a) A photosynthetic antenna system which contains a protein-free chromophore aggregate. Z Naturforsch 45c: 203–206

    Google Scholar 

  • Holzwarth AR, Müller, MG and Griebenow K (1990b) Picosecond energy transfer kinetics between pigment pools in different preparations of chlorosomes from the green bacterium Chloroflexus aurantiacus. J Photochem Photobiol B 5: 457–465

    Article  CAS  Google Scholar 

  • Holzwarth AR, Griebenow K and Schaffner K (1992) Chlorosomes, photosynthetic antennae with novel self-organized pigment structures. J Photochem Photobiol A 65: 61–71

    CAS  Google Scholar 

  • Huster MS and Smith KM (1990) Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d. Biochemistry 29: 4348–4355

    Article  CAS  PubMed  Google Scholar 

  • Johnson SG and Small GJ (1991) Excited state structure and energy transfer dynamics of the bacteriochlorophyll a protein from Prosthecochloris aestuarii. J Phys Chem 95: 471–479

    CAS  Google Scholar 

  • Karapetyan NV, Swarthoff T, Rijgersberg CP and Amesz J (1980) Fluorescence emission spectra of cells and subcellular preparations of a green photosynthetic bacterium. Effects of dithionite on the intensity of the emission bands. Biochim Biophys Acta, 593: 254–60

    CAS  PubMed  Google Scholar 

  • Katz JJ, Bowman MK, Michalski TJ and Worcester DL (1991) Chlorophyll aggregation: Chlorophyll/water micelles as models for in vivo long-wavelength chlorophyll. In: Scheer H (ed) Chlorophylls, pp 211–235. CRC Press, Boca Raton

    Google Scholar 

  • Keller D and Bustamante C (1986) Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psitype circular dichroism. J Chem Phys 84: 2972–2980

    CAS  Google Scholar 

  • Knox RS and Gülen D (1993) Theory of polarized fluorescence from molecular pairs: Förster transfer at large electronic coupling. Photochem Photobiol 57: 40–43

    CAS  Google Scholar 

  • Knudsen E, Jantzen E, Bryn K, Ormerod JG and SirevÃ¥g R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 135: 149–154

    Google Scholar 

  • Krasnovsky AA and Bystrova MI (1980) Self-assembly of chlorophyll aggregated structures. BioSystems 12: 181–194

    Article  CAS  PubMed  Google Scholar 

  • Krasnovsky AA and Pakshina EV (1959) The photochemical and spectral properties of bacterioviridin of green sulfur bacteria. Doklady Acad Nauk SSSR (English Trans) 127: 215–218

    Google Scholar 

  • Krasnovsky AA, Erokhin YuE and Federovich IB (1961) The fluorescence of green photosynthesizing bacteria and the state of the bacterioviridin in them. Doklady Acad Nauk SSSR (English Trans) 134: 225–227

    Google Scholar 

  • Krasnovsky AA, Erokhin YuE and Yü-ch’ün H (1962) Fluorescence of aggregated forms of bacterioviridin and chlorophyll in relation to the state of the pigments in photosynthesizing organisms. Doklady Acad Nauk SSSR (English Trans) 143: 250–252

    Google Scholar 

  • Krasnovsky AA, Erokhin YuE and Gulyaev BA (1963) Temperature dependence of luminescence of bacterioviridin and state of this pigment in photosynthetic bacteria. Doklady Acad Nauk SSR (English Trans) 152: 1191–1194

    Google Scholar 

  • Krasnovsky AA, Bystrova MI and Pakshina EV (1966) Effect of the magnesium atom of the pigment molecule on the spectral properties of aggregated forms of chlorophyll analogs. Doklady Acad Nauk SSSR (English Trans) 167: 109–112

    Google Scholar 

  • Kratky C and Dunitz JD (1975) Comparison of the results of two independent analyses of the ethyl chlorophyllide a dihydrate. Acta Cryst B31 1586–1589

    CAS  Google Scholar 

  • Kratky C and Dunitz JD (1977) Ordered aggregation states of chlorophyll a and some derivatives. J Mol Biol 113: 431–442

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto N, Inoue K, Nasu H and Sakurai H (1994) Preparation of a photoactive reaction center complex containing photoreducible Fe-S centers and photooxidizable cytochrome c from the green sulfur bacterium Chlorobium tepidum. Plant Cell Physiol 35: 17–25

    CAS  Google Scholar 

  • Larsen KL, Cox RP and Miller M (1994) Effects of illumination intensity on bacteriochlorophyll c homolog distribution in Chloroflexus aurantiacus grown under controlled conditions. Photosynth Res 41: 151–156

    Article  CAS  Google Scholar 

  • Larsen KL, Miller M and Cox RP (1995) Incorporation of exogenous long-chain alcohols into bacteriochlorophyll c homologs by Chloroflexus aurantiacus. Arch Microbiol 163: 119–123

    CAS  Google Scholar 

  • Lehmann RP, Brunisholz RA and Zuber H (1994a) Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7 kDa polypeptide. FEES Lett 342: 319–324

    Article  CAS  Google Scholar 

  • Lehmann RP, Brunisholz RA and Zuber H (1994b) Giant circular dichroism of chlorosomes from Chloroflexus aurantiacus treated with 1-hexanol and proteolytic enzymes. Photosynth Res 41: 165–173

    Article  CAS  Google Scholar 

  • Liaaen Jensen S, Hegge E and Jackman LM (1964) Bacterial carotenoids. XVII. The carotenoids of photosynthetic green bacteria. Acta Chem Scand 18: 1703–1718

    Google Scholar 

  • Lin S, Van Amerongen H and Struve WS (1991) Ultrafast pump-probe spectroscopy of bacteriochlorophyll c antennae in bacteriochlorophyll a-containing chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1060: 13–24

    CAS  Google Scholar 

  • Louwe RJW and Aartsma TJ (1994) Optical dephasing and excited state dynamics in photosynthetic pigment-protein complexes. J Luminesc 58: 154–157

    Article  CAS  Google Scholar 

  • Lu XY and Pearlstein RM (1993) Simulations of Prosthecochloris Bacteriochlorophyll a-Protein Optical Spectra Improved by Parametric Computer Search. Photochem Photobiol 57:86–91

    CAS  Google Scholar 

  • Lutz M and van Brakel G (1988) Ground-state molecular interactions of bacteriochlorophyll c in chlorosomes of green bacteria and in model systems: A resonance Raman study. In: Olson JM, Ormerod JG, Atnesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 23–34. Plenum Press, New York

    Google Scholar 

  • Lyle PA and Struve WS (1990) Evidence for ultrafast exciton localization in the Qy band of bacteriochlorophyll a-protein from Prosthecochloris aestuarii. J Phys Chem 94: 7338–7339

    Article  CAS  Google Scholar 

  • Matsuura K and Olson JM (1990) Reversible conversion of aggregated bacteriochlorophyll c to monomeric form by 1-hexanol in chlorosomes from Chlorobium and Chloroflexus. Biochim Biophys Acta 1019: 233–238

    CAS  Google Scholar 

  • Matsuura K, Hirota M, Moriyama T, Shimada K, Nishimura Y, Yamazaki I and Mimuro M (1992) Pigment orientation and energy transfer kinetics in chlorosomes ofgreen photosynthetic bacteria. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 113–116) Kluwer, Dordrecht.

    Google Scholar 

  • Matsuura K, Hirota M, Shimada K and Mimuro M (1993) Spectral forms and orientation of bacteriochlorophylls c and a in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Photochem Photobiol 57: 92–97

    CAS  Google Scholar 

  • Matthews BW and Fenna RE (1980) Structure of a green bacteriochlorophyll protein. Accts Chem Res 13: 309–317

    CAS  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MF and Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285

    Article  CAS  PubMed  Google Scholar 

  • Miller M, Cox RP and Gillbro T (1991) Energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus; studies using picosecond absorbance spectroscopy. Biochim Biophys Acta 1057: 187–194

    CAS  Google Scholar 

  • Miller M, Gillbro T and Olson JM (1993a) Aqueous aggregates of bacteriochlorophyll c as a model for pigment organization in chlorosomes. Photochem Photobiol 57: 98–102

    CAS  Google Scholar 

  • Miller M, Simpson D and Redlinger TE (1993b) The effect of detergent on the structure and composition of chlorosomes isolated from Chloroflexus aurantiacus. Photosynth Res 35: 275–283

    Article  CAS  Google Scholar 

  • Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki I, Lin S, Knox RS. Wittmershaus BP, Brune DC and Blankenship RE (1989) Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. J Phys Chem 93: 7503–7509

    Article  CAS  Google Scholar 

  • Mimuro M, Hirota H, Shimada K, Nishimura Y and Yamazaki I (1992) Excitation energy transfer processes in green photosynthetic bacteria: Analysis in a three dimensionally oriented system in the picosecond time range. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 17–24. Kluwer, Dordrecht

    Google Scholar 

  • Mimuro M, Hirota H, Nishimura Y, Moriyama T, Yamazaki I, Shimada K, and Matsuura K (1994a) Molecular organization of bacteriochlorophyll in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus: Studies of fluorescence depolarization accompanied by energy transfer processes. Photosynth Res 41: 181–191

    Article  CAS  Google Scholar 

  • Mimuro M, Nozawa T, Tamai N, Nishimura Y and Yamazaki I (1994b) Presence and significance of minor antenna components in the energy transfer sequence of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Letters 340: 167–172

    Article  CAS  PubMed  Google Scholar 

  • Müller MG, Griebenow K and Holzwarth AR (1990) Fluorescence lifetime measurements of energy transfer in chlorosomes and living cells of Chloroflexus aurantiacus OK 70-fl. In: Baltscheffsky M (ed) Current Research In Photosynthesis, Vol II, pp 177–180. Kluwer, Dordrecht

    Google Scholar 

  • Müller MG, Griebenow K and Holzwarth AR (1993) Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1144: 161–169

    PubMed  Google Scholar 

  • Niedermeier G, Scheer H and Feick RG (1992) The functional role of protein in the organization of bacteriochlorophyll c in chlorosomes of Chloroflexus aurantiacus. Eur J Biochem 204: 685–692

    Article  CAS  PubMed  Google Scholar 

  • Niedermeier G, Shiozawa JA, Lottspeich F and Feick RG (1994) Primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342: 61–65

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Noguchi T and Tasumi M (1990a) Resonance Raman studies on the structure of bacteriochlorophyll c in chlorosomes of Chloroflexus aurantiacus. J Biochem 108: 737–740

    CAS  PubMed  Google Scholar 

  • Nozawa T, Suzuki M, Kanno S and Shirai S (1990b) CP/MAS 13C-NMR studies on the structure of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. Chem Lett: 1805–1808

    Google Scholar 

  • Nozawa T, Suzuki M, Ohtomo K, Morishita Y, Konami H and Madigan MT (1991) Aggregation structure of bacteriochlorophyll c in chlorosomes from Chlorobium tepidum. Chem Lett: 1641–1644

    Google Scholar 

  • Nozawa T, Ohtomo K, Suzuki M, Morishita Y and Konami H (1992a) CP/MAS 13C NMR studies on antenna structure in green bacteria. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 97–100. Kluwer, Dordrecht

    Google Scholar 

  • Nozawa T, Ohtomo K, Takeshita N, Morishita Y and Madigan M (1992b) Substituent effects on the aggregation of bacteriochlorophyll d homologues purified from Chlorobium limicola. Bull Chem Soc Jpn 65: 3493–3494

    CAS  Google Scholar 

  • Nozawa T, Ohtomo K, Suzuki M, Morishita Y and Madigan MT (1993) Structures and organization of bacteriochlorophyll c’s in chlorosomes from a new thermophilic bacterium Chlorobium tepidum. Bull Chem Soc Jpn 66: 231–237

    CAS  Google Scholar 

  • Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H and Wang Z-Y (1994) Structures of chlorosomes and aggregated BChl c in Chlorobium tepidum from solid state high resolution CP/MAS 13CNMR. Photosynth Res 41: 211–223

    Article  CAS  Google Scholar 

  • Nuijs AM, Vasmel H, Duysens LNM and Amesz J (1986) Antenna and reaction-center processes upon picosecond-flash excitation of membranes of the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 849: 316–324

    CAS  Google Scholar 

  • Oelze J (1985) Analysis of bacteriochlorophylls. Meth Microbiol 18: 257–284

    CAS  Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophyll-a and bacteriochlorophyll c in Chloroflexus aurantiacus. J Bacteriol 174: 5021–5026

    CAS  PubMed  Google Scholar 

  • Oh-Oka H, Kakutani S, Matsubara H, Malkin R and Itoh S (1993) Isolation of the photoactive reaction center complex that contains three types of Fe-S centers and a cytochrome c subunit from the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum, strain Larsen. Plant Cell Physiol 34: 93–100

    CAS  Google Scholar 

  • Okkels JS, Kjaer B, Hansson O, Svendsen I, Møller BL and Scheller HV (1992) A membrane-bound monoheme cytochrome-c551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem 267: 21139–21145

    CAS  PubMed  Google Scholar 

  • Olson JM (1966) Chlorophyll-protein complexes derived from green photosynthetic bacteria. In: Vernon LP and Seely GR (eds.) The Chlorophylls (pp 413–425) Academic Press, New York.

    Google Scholar 

  • Olson JM (1971) Bacteriochlorophyll-protein of green photosynthetic bacteria. In: San Pietro A (ed) Methods in Enzymology Vol 23 Part A, pp 636–639. Academic Press, New York

    Google Scholar 

  • Olson JM (1978) Bacteriochlorophyll a-proteins from green bacteria. In: Clayton RK and Sistrom RS (eds) The Photosynthetic Bacteria, pp 161–178. Plenum Press, New York

    Google Scholar 

  • Olson JM (1980a) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594: 33–51

    CAS  PubMed  Google Scholar 

  • Olson JM (1980b) Bacteriochlorophyll a-proteins of two green photosynthetic bacteria. Meth Enzymol 69: 336–344

    CAS  Google Scholar 

  • Olson JM (1994) Reminiscence about ‘Chloropseudomonas ethylicum’ and the FMO protein. Photosynth Res 41: 3–5

    CAS  Google Scholar 

  • Olson JM and Cox RP (1991) Monomers, dimers, and tetramers of 4-normal-propyl-5-ethyl farnesyl bacteriochlorophyll c in dichloromethane and carbon tetrachloride. Photosynth Res 30: 35–43

    CAS  Google Scholar 

  • Olson JM and Pedersen JP (1988) Bacteriochlorophyll c aggregates in carbon tetrachloride as models for chlorophyll organization in green photosynthetic bacteria. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 365–373 Walter de Gruyter, Berlin

    Google Scholar 

  • Olson JM and Pedersen JP (1990) Bacteriochlorophyll c momomers, dimers, and higher aggregates in dichloromethane, chloroform, and carbon tetrachloride. Photosynth Res 25: 25–37

    Article  CAS  Google Scholar 

  • Olson JM and Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108: 209–248

    CAS  PubMed  Google Scholar 

  • Olson JM and Romano CA (1962) A new chlorophyll from green bacteria. Biochim Biophys Acta 59: 726–728

    Article  CAS  PubMed  Google Scholar 

  • Olson JM, Koenig DF and Ledbetter MC (1969) Model of the bacteriochlorophyll-protein from green photosynthetic bacteria. Arch Biochem Biophys 129: 42–48

    CAS  PubMed  Google Scholar 

  • Olson JM, Philipson KD and Sauer K (1973) Circular dichroism and absorption spectra of bacteriochlorophyll-protein and reaction center complexes from Chlorobium thiosulfatophilum. Biochim Biophys Acta 292: 206–217

    CAS  PubMed  Google Scholar 

  • Olson JM, Ke B and Thompson KH (1976a) Exciton interaction among chlorophyll molecules in bacteriochlorophyll a proteins and bacteriochlorophyll a reaction center complexes from green bacteria. Biochim Biophys Acta 430: 524–537 Errata 763

    CAS  PubMed  Google Scholar 

  • Olson JM, Shaw EK and Englberger FM (1976b) Comparison of bacteriochlorophyll a-proteins from two green bacteria. Biochem J 159: 769–774

    CAS  PubMed  Google Scholar 

  • Olson JM, Gerola PD, van Brakel GH, Meiburg RF and Vasmel H (1985) Bacteriochlorophyll a-and c-protein complexes from chlorosomes of green sulfur bacteria compared with Bacteriochlorophyll c aggregates in CH2Cl2-hexane. In: Michel-Beyerle ME (ed) Antennas and Reaction Centers of Photosynthetic Bacteria, pp 67–73 Springer-Verlag, Berlin

    Google Scholar 

  • Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) (1988) Green Photosynthetic Bacteria, Plenum, New York

    Google Scholar 

  • Olson RA, Jennings WH and Olson JM (1969a) Chlorophyll orientation in crystals of bacteriochlorophyll-protein from green photosynthetic bacteria. Arch Biochem Biophys 129: 30–41

    CAS  PubMed  Google Scholar 

  • Olson RA, Jennings WH and Hanna CH (1969b) Paracrystalline aggregates of bacteriochlorophyll protein from green photosynthetic bacteria. Arch Biochem Biophys 130: 140–147

    Article  CAS  PubMed  Google Scholar 

  • Orme-Johnson WH and Beinert H (1969) On the formation of the superoxide anion radical during the reaction of reduced iron-sulfur proteins with oxygen. Biochem Biophys Res Comm 36: 905–911

    CAS  PubMed  Google Scholar 

  • Ormerod JG (1992) Physiology of the photosynthetic prokaryotes. In: Photosynthetic Prokaryotes, NH Mann and NG Carr (eds), pp 93–120. Plenum, New York.

    Google Scholar 

  • Ormerod JG, Nesbakken T and Beale SI (1990) Specific inhibition of antenna bacteriochlorophyll synthesis in Chlorobium vibrioforme by anesthetic gases. J Bacteriol 172: 1352–1360

    CAS  PubMed  Google Scholar 

  • Otte SCM, van der Heiden JC, Pfennig N and Amesz J (1991) A comparative study of the optical characteristics of intact cells of photosynthetic green sulfur bacteria containing bacteriochlorophyll c, d or e. Photosynth Res 28: 77–87

    CAS  Google Scholar 

  • Otte SCM, van de Meent EJ, Van Veelen PA, Pundsnes AS and Amesz J (1993) Identification of the major chlorosomal bacteriochlorophylls of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeovibrioides; their function in lateral energy transfer. Photosynth Res 35: 159–169

    Article  CAS  Google Scholar 

  • Overmann J, Cypionka H and Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155

    CAS  Google Scholar 

  • Pearlstein RM (1988) Interpretation of optical spectra of bacteriochlorophyll antenna complexes. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 555–566. Walter de Gruyter, Berlin

    Google Scholar 

  • Pearlstein (1991) Theoretical interpretation of antenna spectra. In: Scheer H (ed) Chlorophylls, pp 1047–1078. CRC Press, Boca Raton

    Google Scholar 

  • Pearlstein RM (1992) Theory of the optical spectra of the bacteriochlorophyll a antenna protein trimer from Prosthecochloris aestuarii. Photosynth Res 31: 213–226

    Article  CAS  Google Scholar 

  • Pearlstein RM and Hemenger RP (1978) Bacteriochlorophyll electronic transition moment directions in bacteriochlorophyll a-protein. Proc Natl Acad Sci USA 75: 4920–4924

    CAS  Google Scholar 

  • Philipson KD and Sauer K (1972) Exciton interaction in a bacteriochlorophyll-protein from Chloropseudomonas ethylica. Absorption and circular dichroism at 77 K. Biochemistry 11: 1880–1885

    CAS  PubMed  Google Scholar 

  • Pierson BK and Castenholz RW (1974a) Phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus. Arch Microbiol 100: 5–24

    CAS  PubMed  Google Scholar 

  • Pierson BK and Castenholz RW (1974b) Pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100: 283–305

    CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1978). Photosynthetic apparatus and cell membranes of green bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 161–178. Plenum, New York

    Google Scholar 

  • Pierson BK and Castenholz RW (1992) The family Chloroflexaceae. In: Balows A, Trüper HG, Dworkin M, Schliefer KH and Harder W (eds) The Prokaryotes, pp 3754–3774. Springer-Verlag, Berlin

    Google Scholar 

  • Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 402–427. Am Soc Microbiol, Washington

    Google Scholar 

  • Risch N, Brockmann H and Gloe A (1979) Structuraufklarung von neuartigen bacteriochlorophyllen aus Chloroflexus aurantiacus. Liebigs Ann Chem: 408–418

    Google Scholar 

  • Savikhin S and Struve WS (1994) Ultrafast energy transfer in FMO trimers from the green bacterium Chlorobium tepidum. Biochemistry 33: 11200–11208

    Article  CAS  PubMed  Google Scholar 

  • Savikhin S, Zhou W, Blankenship RE and Struve WS (1994a) Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a-Protein antenna trimers from the green bacterium Chlorobium tepidum. Biophys J 66: 110–113

    CAS  PubMed  Google Scholar 

  • Savikhin S, Zhu Y, Lin S, Blankenship RE and Struve WS (1994b) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem 98: 10322–10334

    Article  CAS  Google Scholar 

  • Scheer H (1991) Structure and occurrence of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 3–30. CRC Press, Boca Raton

    Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus Strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum Strain 6230. Arch Microbiol 124: 21–31

    Article  CAS  Google Scholar 

  • Schmidt K, Maarzahl M and Mayer F (1980) Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl. Arch Microbiol 127: 87–97

    CAS  Google Scholar 

  • Smith KM (1994) Nomenclature ofthe bacteriochlorophylls c, d and e. Photosynth Res 41: 23–26

    Article  CAS  Google Scholar 

  • Smith KM and Bobe FW (1987) Light adaptation of bacteriochlorophyll d producing bacteria by enzymic methylation of their antenna pigments. J Chem Soc Chem Commun 276–277

    Google Scholar 

  • Smith KM, Kehres LA and Fajer J (1983) Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105: 1387–1389

    CAS  Google Scholar 

  • Smith KM Bobe FW, Goff DA and Abraham RJ (1986) NMR spectra of porphyrins 28. Detailed solution structure of a bacteriochlorophyllide d dimer. J Am Chem Soc 108: 1111–1120

    CAS  Google Scholar 

  • Sprague SG, Staehelin LA, DiBartolomeis MJ and Fuller RC (1981a) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031

    CAS  PubMed  Google Scholar 

  • Sprague SG, Staehelin LA and Fuller RC (1981b) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1032–1039

    CAS  PubMed  Google Scholar 

  • Staehelin LA, Golecki JR, Fuller RC and Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119: 269–277

    Article  Google Scholar 

  • Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589: 30–45

    CAS  PubMed  Google Scholar 

  • Stolz JF, Fuller RC and Redlinger TE (1990) Pigment-protein diversity in chlorosomes of green phototrophic bacteria. Arch Microbiol 154: 422–427

    Article  CAS  Google Scholar 

  • Swarthoff T and Amesz J (1979) Photochemically active pigment-protein complexes from the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 548: 427–432

    CAS  PubMed  Google Scholar 

  • Swarthoff T, Amesz J, Kramer HJM and Rijgersberg CP (1981) The reaction center and antenna pigments of green photosynthetic bacteria. Isr J Chem 21: 332–337

    CAS  Google Scholar 

  • Sybesma C and Olson JM (1963) Transfer of chlorophyll excitation energy in green photosynthetic bacteria. Proc Natl Acad Sci USA 49: 248–253

    CAS  PubMed  Google Scholar 

  • Tamiaki H, Holzwarth AR and Schaffner K (1992) A synthetic zinc chlorin aggregate as a model for the supramolecular antenna complexes in the chlorosomes of green bacteria. J Photochem Photobiol 15: 355–360

    CAS  Google Scholar 

  • Tamiaki H, Holzwarth AR and Schaffner K (1994) Dimerization of synthetic zinc aminochlorins in non-polar organic solvents. Photosynth Res 41: 245–251

    Article  CAS  Google Scholar 

  • Theroux SJ, Redlinger TE, Fuller RC and Robinson SJ (1990) Gene encoding the 5.7 kilodalton chlorosome protein of Chloroflexus aurantiacus: Regulated message levels and a predicted carboxy-terminal protein extension. J Bacteriol 172: 4497–4504

    CAS  PubMed  Google Scholar 

  • Thornber JP and Olson JM (1968) The chemical composition of a crystalline bacteriochlorophyll-protein complex isolated from the green bacterium Chloropseudomonas ethylicum. Biochemistry 7: 2242–2249

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE and Matthews BW (1993) Refinement of the structure of a water-soluble antenna complex from green photosynthetic bacteria with incorporation of the chemically determined amino acid sequence. In: Norris J and Deisenhofer H (eds) The Photosynthetic Reaction Center, Vol. 1, pp 13–21. Academic Press, San Diego

    Google Scholar 

  • Tronrud DE, Schmid MF and Matthews BW (1986) Structure and x-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Ã… resolution. J Mol Biol 188: 443–454

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG and Pfennig N (1992) The family Chlorobiaceae. In: Balows A, Trüper HG, Dworkin M, Schliefer KH and Harder W (eds) The Prokaryotes, pp 3583–3592. Springer-Verlag, Berlin

    Google Scholar 

  • Uehara K and Olson JM (1992) Aggregation of bacteriochlorophyll c homologs to dimers, tetramers, and polymers in water-saturated carbon tetrachloride. Photosynth Res 33:251–257

    Article  CAS  Google Scholar 

  • Uehara K, Ozaki Y, Okada K and Olson JM (1991) FT-IR studies on the aggregation of bacteriochlorophyll c from Chlorobium limicola. Chem Lett: 909–912

    Google Scholar 

  • Uehara K, Mimuro M, Ozaki Y, and Olson JM (1994) The formation and characterization of the in vitro polymeric aggregates of bacteriochlorophyll c homologs from Chlorobium limicola in aqueous suspension in the presence of monogalactosyl diglyceride. Photosynth Res 41: 235–243

    Article  CAS  Google Scholar 

  • Van Amerongen H and Struve WS (1991) Excited-state absorption in bacteriochlorophyll a-protein from the green bacterium Prosthecochloris aestuarii: Reinterpretation of the absorption difference spectrum. J Phys Chem 95: 9020–9023

    Google Scholar 

  • Van Amerongen H, Vasmel H and van Grondelle R (1988) Linear dichroism of chlorosomes from Chloroflexus aurantiacus in compressed gels and electric fields. Biophys J 54: 65–76

    Google Scholar 

  • Van Amerongen H, Van Haeringen B, Van Gurp M and Van Grondelle R (1991) Polarized fluorescence measurements on ordered photosynthetic antenna complexes-chlorosomes of Chloroflexus aurantiacus and B800–B850 antenna complexes of Rhodobacter sphaeroides. Biophys J 59: 992–1001

    Google Scholar 

  • Van Dorssen RJ and Amesz J (1988) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III. Energy transfer in whole cells. Photosynth Res 15: 177–189

    Article  Google Scholar 

  • Van Dorssen RJ Gerola PD Olson JM and Amesz J (1986a) Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta 848: 77–82

    Google Scholar 

  • Van Dorssen RJ, Vasmel H and Amesz J (1986b) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome. Photosynth Res 9: 33–45

    Article  Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T and Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    CAS  Google Scholar 

  • Van Mourik F, Verwijst RR, Mulder JM and Van Grondelle R (1992) Excitation transfer dynamics and spectroscopic properties of the light-harvesting BChl a complex of Prosthecochloris aestuarii. J. Luminesc 53: 499–502

    Google Scholar 

  • Van Mourik F, Verwijst RR, Mulder JM and Van Grondelle R (1994) Singlet—triplet spectroscopy of the light-harvesting BChl a complex of Prosthecochloris aestuarii. The nature of the low-energy 825 nm transition. J Phys Chem 98: 10307–10312

    Google Scholar 

  • Van Noort PI, Francke C, Schoumans N, Otte SCM, Aartsma TJ and Amesz J (1994) Chlorosomes of green bacteria: Pigment composition and energy transfer. Photosynth Res 41:, 193–203

    Article  Google Scholar 

  • Vasmel H, Van Dorssen RJ, De Vos GJ and Amesz J (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. I. The cytoplasmic membrane. Photosynth Res 7: 281–294

    Article  CAS  Google Scholar 

  • Vos M, Nuijs AM, van Grondelle R, van Dorssen RJ, Gerola PD and Amesz J (1987) Excitation transfer in chlorosomes of green photosynthetic bacteria. Biochim Biophys Acta 891: 275–285

    CAS  Google Scholar 

  • Wagner-Huber R, Brunisholz R, Frank G and Zuber H (1988) The bacteriochlorophyll c/e-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett. 239: 8–12

    Article  CAS  Google Scholar 

  • Wagner-Huber R, Brunisholz R, Frank G and Zuber H (1990) The primary structure of the presumable BChl d-binding polypeptide of Chlorobium vibrioforme f. thiosulfatophilum. Z Naturforsch 45c: 818–822

    Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90

    Article  CAS  Google Scholar 

  • Wang J, Brune DC and Blankenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015: 457–463

    CAS  PubMed  Google Scholar 

  • Wechsler T, Brunisholz R, Suter F, Fuller RC and Zuber H (1985a) The complete amino acid sequence of a bacteriochlorophyll a binding polypeptide isolated from the cytoplasmic membrane of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett, 191: 34–38

    Article  CAS  Google Scholar 

  • Wechsler T, Suter F, Fuller RC and Zuber H (1985b) The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 181: 173–178

    Article  CAS  Google Scholar 

  • Wechsler TD, Brunisholz RA, Frank G, Suter F and Zuber H (1987) The complete amino acid sequence of the antenna polypeptide B806–866 β-from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett 210: 189–194

    Article  CAS  Google Scholar 

  • Whitten WB, Olson JM and Pearlstein RM (1980) Seven-fold exciton splitting of the 810-nm band in bacteriochlorophyll a-proteins from green photosynthetic bacteria. Biochim Biophys Acta 591:203–207

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Worcester DL, Michalski TJ and Katz JJ (1986) Small-angle neutron scattering studies of chlorophyll micelles: Models for bacterial antenna chlorophyll. Proc Natl Acad Sci USA 83: 3791–3795

    CAS  Google Scholar 

  • Worcester DL, Michalski TJ and Katz JJ (1993) Cylindrical aggregates of protochlorophyll-a compared with aggregates of bacteriochlorophyll-c: Models for antenna chlorophyll in Chloroflexus & Chlorobium. Biophys J 64: A215

    Google Scholar 

  • Wullink W, Knudsen J, Olson JM, Redlinger TE and Van Bruggen EFJ (1991) Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immunogold labeling electron microscopy. Biochim Biophys Acta 1060: 97–105

    CAS  Google Scholar 

  • Zhou W, LoBrutto R, Lin S and Blankenship RE (1994) Redox effects on the bacteriochlorophyll a-containing Fenna-Matthews-Olson protein from Chlorobium tepidum. Photosynth Res 41: 89–96

    Article  CAS  PubMed  Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Scheer H (ed) Chlorophylls, pp 628–692. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Blankenship, R.E., Olson, J.M., Miller, M. (1995). Antenna Complexes from Green Photosynthetic Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics