Skip to main content

Structure, Molecular Organization, and Biosynthesis of Membranes of Purple Bacteria

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson H and von Heijne G (1993) Sec dependent and sec independent assembly of E. coli inner membrane proteins: The topological rules depend on chain length. EMBO J 12: 683–691

    CAS  PubMed  Google Scholar 

  • Arnheim K and Oelze J (1983a) Differences in the control of bacteriochlorophyll formation by light and oxygen. Arch Microbiol 135: 299–304

    Article  CAS  Google Scholar 

  • Arnheim K and Oelze J (1983b) Control by light and oxygen of B875 and B850 pigment-protein complexes in Rhodobacter sphaeroides. FEBS Lett 162: 57–60

    Article  Google Scholar 

  • Baccarini-Melandri A and Zannoni D (1978) Photosynthetic and respiratory electron flow in the dual functional membrane of facultative photosynthetic bacteria. J Bioenerg Biomembr 10: 109–138

    Google Scholar 

  • Bachofen R and Wiemken V (1986) Topology of the chromatophore membranes of purple bacteria. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III, pp 620–631. Springer Publ Berlin, Heidelberg

    Google Scholar 

  • Baciou L, Gulik-Krzywicki T and Sebban P (1991) Involvement of the protein-protein interactions in the thermodynamics of the electron-transfer process in the reaction centers from Rhodopseudomonas viridis. Biochemistry 30: 1298–1302

    CAS  PubMed  Google Scholar 

  • Barrett J, Hunter CN and Jones OTG (1978) Properties of a cytochrome c-enriched particulate fraction isolated from the photosynthetic bacterium Rhodopseudomonas capsulata. Biochem J 174: 267–275

    CAS  PubMed  Google Scholar 

  • Bauer CE, Buggy JJ, Yang Z and Marrs B (1991) The superoperonal organization of genes for pigment biosynthesis and reaction center proteins. Mol Gen Genet 228: 433–447

    Article  CAS  PubMed  Google Scholar 

  • Bayer ME (1968) Areas of adhesion between cell wall and membrane of Escherichia coli. J Gen Microbiol 53: 395–401

    CAS  PubMed  Google Scholar 

  • Beck J and Drews G (1982) Tetrapyrrole derivatives shown by fluorescence emission and excitation spectroscopy in cells of Rhodopseudomonas capsulata adapting to phototrophic conditions. Z Naturforsch 37c: 199–204

    CAS  Google Scholar 

  • Bennet J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269: 4344–4346

    Google Scholar 

  • Biedermann M, Drews G, Marx R and Schröder J (1967) Der Einfluß des Sauerstoffpartialdruckes und der Antibiotica Actinomycin und Puromycin auf das Wachstum, die Synthese von Bacteriochlorophyll und die Thylakoidmorphogenese in Dunkelkulturen von Rhodospirillum rubrum. Arch Mikrobiol 56: 133–147

    Article  CAS  PubMed  Google Scholar 

  • Boatman ES (1964) Observations on the fine structure of spheroplasts of Rhodospirillum rubrum. J Cell Biol 20: 297–311

    Article  CAS  PubMed  Google Scholar 

  • Bollivar DW and Bauer CE (1992) Association of tetrapyrrole intermediates in the bacteriochlorophyll a biosynthesis pathway with the major outer-membrane porin protein of Rb. capsulatus. Biochem J 282: 471–476

    CAS  PubMed  Google Scholar 

  • Bowyer JR, Hunter CN, Ohnishi T and Niederman RA (1985) Photosynthetic membrane development in Rhodopseudomonas sphaeroides. J Biol Chem 260: 3295–3304

    CAS  PubMed  Google Scholar 

  • Brandner JP and Donohue TJ (1994) The Rhodobacter sphaeroides cytochrome c2 signal peptide is not necessary for export and heme attachment. J Bacteriol 176: 602–609

    CAS  PubMed  Google Scholar 

  • Brandner JP, Stabb EV, Temme R and Donohue TJ (1991) Regions of Rhodobacter sphaeroides cytochrome c2 required for export, heme attachment and function. J Bacteriol 173: 3958–3965

    CAS  PubMed  Google Scholar 

  • Brunisholz RA and Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. J Photochem Photobiol B: Biol 15: 113–140

    CAS  Google Scholar 

  • Bylina EJ, Robles SJ and Youvan DC (1988) Directed mutations affecting the putative bacteriochlorophyll-binding sites in the light-harvesting I antenna of Rhodobacter capsulatus. Israel J Chem 128: 73–78

    Google Scholar 

  • Cain BD, Donohue TJ, Shepherd WD and Kaplan S (1984) Localization of phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides J Biol Chem 259: 942–948

    CAS  PubMed  Google Scholar 

  • Campbell TB and Lueking DR (1983) Light-mediated regulation of phospholipid synthesis in Rhodopseudomonas sphaeroides. J Bacteriol 155: 806–816

    CAS  PubMed  Google Scholar 

  • Chory J, Donohue TJ, Varga AR, Staehelin LA and Kaplan S (1984) Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: Biochemical and morphological studies. J Bacteriol 159: 540–554

    CAS  PubMed  Google Scholar 

  • Cogdell RJ, Durrant I, Valentine J, Lindsy JG and Schmidt K (1983) The isolation and partial characterisation of the light-protein complement of Rhodopseudomonas acidophila. Biochim Biophys Acta 722: 427–435

    CAS  Google Scholar 

  • Cohen-Bazire G and Kunisawa R (1963) The fine structure of Rhodospirillum rubrum. J Cell Biol 16: 401–419

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68

    Article  CAS  Google Scholar 

  • Collins MLP and Remson ST (1984) Immunogold detection of chromatophore antigens on the surface of Rhodopseudomonas sphaeroides spheroplasts. Current Microbiol 11: 269–274

    CAS  Google Scholar 

  • Collins MLP and Remsen CC (1991) The purple phototrophic bacteria. In: Stolz JF (ed) Structure of Phototrophic Prokaryotes, pp 49–77. CRC Press, Boca Raton

    Google Scholar 

  • Cooper CL, Boyce SG and Lueking DR (1987) Purification and characterization of Rhodobacter sphaeroides acyl carrier protein. Biochemistry 26: 2740–2746

    CAS  PubMed  Google Scholar 

  • Cortez N, Garcia AF, Tadros MH, Gad’on N, Schiltz E and Drews G (1992) Redox-controlled, in vivo and in vitro phosphorylation of the α subunit of the light-harvesting complex I in Rhodobacter capsulatus. Arch Microbiol 158: 315–319

    Article  CAS  Google Scholar 

  • Cox JC, Beatty T and Favinger JL (1983) Increased activity of respiratory enzymes from photosynthetically grown Rhodopseudomonas capsulata in response to small amounts of oxygen. Arch Microbiol 134: 324–328

    Article  CAS  Google Scholar 

  • Crielaard W, Hellingwerf KJ and Konings WN (1989) Reconstitution of electrochemically active pigment-protein complexes from Rb. sphaeroides into liposomes. Biochim Biophys Acta 973: 205–211

    CAS  Google Scholar 

  • Crook SM, Treml SB and Collins MLP (1986) Immunochemical ultrastructural analysis of chromatophore membrane formation in Rhodospirillum rubrum. J Bacteriol 167: 89–95

    CAS  PubMed  Google Scholar 

  • Davidson E, Ohnishi T, Tokito M and Daldal F (1992) Rhodobacter capsulatus mutants lacking Rieske FeS form a stable cytochrome bc1 subcomplex with an intact quinone reduction site. Biochemistry 31: 33351–33357

    Google Scholar 

  • DeBoer WE (1969) On ultrastructure of Rhodopseudomonas gelatinosa and Rhodospirillum tenue. Antonie van Leeuwenhoek J Microbiol Serol 35: 241–242

    Article  Google Scholar 

  • Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell R and Amesz J (1991) Antenna organization of Rhodopseudomonas acidophila: A study of the excitation migration. Biochim Biophys Acta 1060: 125–131

    CAS  Google Scholar 

  • Dierstein R and Drews G (1974) Nitrogen-limited continuous culture of Rhodopseudomonas capsulata growing photosynthetically or heterotrophically under low oxygen tensions. Arch Microbiol 99: 117–128

    Article  CAS  PubMed  Google Scholar 

  • Dierstein R and Drews G (1975) Control of composition and activity of the photosynthetic apparatus of Rhodopseudomonas capsulata grown in ammonium-limited continuous culture. Arch Microbiol 106: 227–235

    Article  CAS  PubMed  Google Scholar 

  • Dierstein R and Drews G (1986) Effect of uncoupler on assembly pathway for pigment-binding protein of bacterial photosynthetic membranes. J Bacteriol 168: 167–172

    CAS  PubMed  Google Scholar 

  • Dierstein R, Schumacher A and Drews G (1981) On insertion of pigment-associated polypeptides during membrane biogenesis in Rhodopseudomonas capsulata. Arch Microbiol 128: 376–383

    Article  CAS  Google Scholar 

  • Ditandi T and Imhoff JF (1993) Preparation and characterization of highly pure fractions of outer membrane, cytoplasmic and intracytoplasmic membranes from Ectothiorhodospira mobilis. J Gen Microbiol 139: 111–117

    Google Scholar 

  • Doi M, Shioi Y, Gad’on N, Golecki JR and Drews G (1991) Spectroscopical studies on the light-harvesting pigment protein complex II from dark aerobic and light anaerobic grown cells of Rhodobacter sulfidophilus. Biochim Biophys Acta 1058: 235–241

    CAS  Google Scholar 

  • Donohue TJ and Kaplan S (1986) Synthesis and assembly of bacterial photosynthetic membranes. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III, pp 632–639. Springer Publ, Berlin

    Google Scholar 

  • Dörge B, Klug G and Drews G (1987) Formation of the B800-850 antenna pigment-protein complex in the strain GK2 of Rhodobacter capsulatus defective in carotenoid synthesis. Biochim Biophys Acta 892: 68–74

    Google Scholar 

  • Dörge B, Klug G, Gad’on N, Cohen SN and Drews G (1990) Effects on the formation of antenna complex B870 of Rb. capsulatus by exchange of charged amino acids in the N-terminal domain of the α and β pigment-binding proteins. Biochemistry 29: 7754–7758

    PubMed  Google Scholar 

  • Drews G (1978) Structure and development of the membrane system of photosynthetic bacteria. In: Sanadi DR, Vernon LP (eds) Current Topics Bioenerg Photosynthesis, Vol 8 B, pp 161–207. Academic Press, New York

    Google Scholar 

  • Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria. Microbiol Rev 49: 59–70

    CAS  PubMed  Google Scholar 

  • Drews G (1988) Effect of oxygen partial pressure on formation of the bacterial photosynthetic apparatus. In: Acker H (ed) Oxygen Sensing in Tissues, pp 3–11. Springer Verlag, Berlin

    Google Scholar 

  • Drews G (1991) Regulated development of the photosynthetic apparatus in anoxygenic bacteria. In: Bogorad L and Vasil IK (eds) The Photosynthetic Apparatus: Molecular Biology and Operation, pp 113–148. Academic Press, New York

    Google Scholar 

  • Drews G (1992) Intracytoplasmic membranes in bacterial cells: Organisation, function and biosynthesis. In: Mohan S, Dow C and Cole JA (eds) Prokaryotic Structure and Function: A New Perspective. Soc Gen Microbiol Symp, Vol 47, pp 249–274. Cambridge Univ Press

    Google Scholar 

  • Drews G and Giesbrecht P (1963) Zur Morphogenese der Bakterien Chromatophoren und zur Synthese des Bakteriochlorophylls bei Rhodopseudomonas spheroides und Rhodospirillum rubrum. Zbl Bakt Parasitenkd Infekt. Krankh. und Hygiene I Orig 190: 508–536

    CAS  Google Scholar 

  • Drews G, and Imhoff JF (1991) Phototrophic purple bacteria. In: Shively JM and Barton LL (eds) Variations in Autotrophic Life, pp 51–97. Academic Press, London

    Google Scholar 

  • Drews G and Jaeger K (1963) Influence of light on the biosynthesis of bacteriochlorophyll by Rhodopseudomonas spheroides. Nature 199: 1112–1113

    CAS  PubMed  Google Scholar 

  • Drews G and Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol 22: 1–92

    CAS  PubMed  Google Scholar 

  • Drews G, Klug G, Liebetanz R and Dierstein R (1987) Regulation of gene expression and assembly of the photosynthetic pigment-protein complexes. In: Biggins J (ed) Progress in Photosynthesis Research, Vol IV, pp 691–697. Marinus NijhoffPubl, Dordrecht

    Google Scholar 

  • Drews G, Leutiger I and Ladwig R (1971) Production of protochlorophyll, protopheophytin and bacteriochlorophyll by the mutant Ala of R. capsulata. Arch Mikrobiol 76: 349–363

    Article  CAS  Google Scholar 

  • Dubochet J, McDowall AW, Menge B, Schmid EN and Lickfeld KG (1983) Electron microscopy of frozen-hydrated bacteria. J Bacteriol 155: 381–390

    CAS  PubMed  Google Scholar 

  • Ebersold HR, Cordier JL and Lüthy P (1981) Bacterial mesosomes: Method dependent artifacts. Arch Microbiol 130: 19–22

    Article  CAS  PubMed  Google Scholar 

  • Eichacker L, Paulsen H and Rüdiger W (1992) Synthesis of chlorophyll a regulates translation of chlorophyll a apoprotein P 700, CP47, CP43 and D2 in barley etioplasts. Eur J Biochem 205: 17–24

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt H, Baumeister W and Saxton WO (1983) Electron microscopy of photosynthetic membranes containing bacteriochlorophyll b. Arch Microbiol 135: 169–175

    Article  CAS  Google Scholar 

  • Evans MB, Hawthornthwaite AM and Cogdell RJ (1990) Isolation and characterization of the different B800–850 light-harvesting complexes from low-and high-light grown cells of Rhodopseudomonas palustris. Biochim Biophys Acta 1016: 71–76

    CAS  Google Scholar 

  • Feick R and Drews G (1978) Protein subunits of bacteriochlorophyll B802 and B855 of the light-harvesting complex II of Rhodopseudomonas capsulata. Z Naturforsch 34c: 196–199

    Google Scholar 

  • Fraley RT, Lueking DR and Kaplan S (1977) Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253: 458–464

    Google Scholar 

  • Fraley RT, Lueking DR and Kaplan S (1979) The relationship of intracytoplasmic membrane assembly to the cell division cycle in Rhodopseudomonas sphaeroides. J Biol Chem 254: 1980–1986

    CAS  PubMed  Google Scholar 

  • Frenkel AW (1954) Light induced phosphorylation by cell-free extracts of photosynthetic bacteria. J Amer Chem Soc 76: 5568–5569

    Article  CAS  Google Scholar 

  • Garcia A, Vernon LP, Ke B and Mollenhauer H (1968) Some structural and photochemical properties of Rhodopseudomonas species NHTC 133 subchromatophore particles obtained by treatment with Triton X-100. Biochemistry 7: 326–332

    CAS  PubMed  Google Scholar 

  • Garcia AF, Drews G and Reidl HH (1981) Comparative studies of two membrane fractions isolated from chemotrophically and phototrophically grown cells of Rhodopseudomonas capsulata. J Bacteriol 145: 1121–1128

    CAS  PubMed  Google Scholar 

  • Garcia AF, Venturoli G, Gad’on N, Fernández-Velasco JG, Melandri BA and Drews G (1987) The adaptation of the electron transfer chain of Rhodopseudomonas capsulata to different light intensities. Biochim Biophys Acta 890: 335–345

    CAS  Google Scholar 

  • Garcia AF, Meryandini A, Brand M, Tadros MH and Drews G (1994) Phosphorylation of the α and β polypeptides of the light-harvesting complex I (B870) of Rhodobacter capsulatus in an in vitro translation system. FEMS Microbiol Lett 124: 87–92

    CAS  Google Scholar 

  • Gardiner AT, MacKenzie RC, Barrett SJ, Kaiser K and Cogdell R (1992) The genes for the peripheral antenna complex apoproteins from Rhodopseudomonas acidophila 7050 form a multigene family. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 77–80. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Giesbrecht P and Drews G (1966) Ãœber die Organisation und die makromolekulare Architektur der Thylakoide lebender Bakterien. Arch Microbiol 54: 297–330

    Google Scholar 

  • Göbel F (1978) Quantum efficiency of growth. In: Clayton RK, Sistrom WR (eds) The Photosynthetic Bacteria, pp 907–925. Plenum Press, New York

    Google Scholar 

  • Golecki JR and Oelze J (1975) Quantitative determination of cytoplasmic membrane invaginations in phototrophically growing Rhodospirillum rubrum. J Gen Microbiol 88: 253–258

    Google Scholar 

  • Golecki JR and Oelze J (1980) Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodospirillaceae. J Bacteriol 144: 781–788

    CAS  PubMed  Google Scholar 

  • Golecki JR, Drews G and Bühler R (1972) The size and number of intramembrane particles in cells of the photosynthetic bacterium Rhodopseudomonas capsulata studied by freezefracture electron microscopy. Cytobiology 18: 381–389

    Google Scholar 

  • Golecki J R, Schumacher A and Drews G (1980) The differentiation of the photosynthetic apparatus and the intracytoplasmic membrane in cells of Rhodopseudomonas capsulata upon variation of light intensity. Eur J Cell Biol 23: 1–5

    CAS  PubMed  Google Scholar 

  • Golecki JR, Tadros MH, Ventura S and Oelze J (1989) Intracytoplasmic membrane vesiculation in light-harvesting mutants of Rhodobacter sphaeroides and Rhodobacter capsulatus. FEMS Microbiol Lett 65: 315–318

    Article  CAS  Google Scholar 

  • Golecki JR, Ventura S and Oelze J (1991) The architecture of unusual membrane tubes in the B800–850 light-harvesting bacteriochlorophyll-deficient mutant 19 of Rhodobacter sphaeroides. FEMS Microbiol Lett 77: 335–340

    Article  CAS  Google Scholar 

  • Gorchein, A (1973) Control of magnesium-protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Biochem J 134: 833–845

    CAS  PubMed  Google Scholar 

  • Grether-Beck S and Oelze J(1987) The development of the photosynthetic apparatus and energy transduction in malatelimited phototrophic cultures of Rhodobacter capsulatus. Arch Microbiol 149: 70–75

    Article  CAS  Google Scholar 

  • Güner S, Robertson DE, Yu L, Quin ZH, Yu CA, Knaff DB (1991) The Rhodospirillum rubrum cytochrome bc1 complex: Redox properties, inhibitor sensitivity and proton pumping. Biochim Biophys Acta 1058: 269–279

    PubMed  Google Scholar 

  • Guthrie N, MacDermott G, Cogdell RJ, Freer AA, Isaacs NW, Hawthornthwaite AM, Halloren E and Lindsay JG (1992) Crystallization of the B800–820 light-harvesting complex from Rhodopseudomonas acidophila strain 7750. J Mol Biol 224: 527–528

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA, Tsinoremas NF and Allen JF (1991) Cyanobacterial thylakoid membrane proteins are reversibly phosphorylated under plastoquinone-reducing conditions in vitro. FEBS Lett 282: 144–148

    Article  Google Scholar 

  • Hayashi H, Nakano M and Morita S (1982) Comparative studies of protein properties and bacteriochlorophyll contents of bacteriochlorophyll-protein complexes from spectrally different types of Rhodopseudomonas paluatris. J Biochem 92: 1805–1811

    CAS  PubMed  Google Scholar 

  • Herrin DL, Battey JF, Greer K and Schmidt G W (1992) Regulation of chlorophyll apoprotein expression and accumulation. J Biol Chem 167: 8260–8269

    Google Scholar 

  • Hickman DD and Frenkel AW (1965) Observations on the structure of Rhodospirillum rubrum. J Cell Biol 25: 279–291

    CAS  PubMed  Google Scholar 

  • Hochman A, Friedberg I and Carmeli C (1975) The location and function of cytochrome c2 in Rhodopseudomonas capsulata membranes. Eur J Biochem 58: 65–72

    Article  CAS  PubMed  Google Scholar 

  • Holmes NG and Allen JF (1988) Protein phosphorylation in chromatophores from Rhodospirillum rubrum. Biochim Biophys Acta 935: 72–78

    CAS  Google Scholar 

  • Holt SC and Marr AG (1965a) Location of chlorophyll in Rhodospirillum rubrum. J Bacteriol 89: 1402–1412

    CAS  PubMed  Google Scholar 

  • Holt SC and Marr AG (1965b) Effect of light intensity on the formation of intracytoplasmic membrane in Rhodospirillum rubrum. J Bacteriol 89: 1421–1429

    CAS  PubMed  Google Scholar 

  • Holuigue L, Lucero HA and Vallejos RH (1985) Protein phosphorylation in the photosynthetic bacterium Rhodospirillum rubrum. FEBS Lett 181: 103–107

    Article  CAS  Google Scholar 

  • Hüdig H and Drews G (1985) Kinetic studies on formation of cytochrome oxidase of Rhodopseudomonas capsulata after a shift from phototrophic to chemotrophic growth. J Bacteriol 162: 897–901

    PubMed  Google Scholar 

  • Hüdig H, Stark G and Drews G (1987) The regulation of cytochrome c oxidase of Rhodobacter capsulatus by light and oxygen. Arch Microbiol 149: 12–18

    Article  Google Scholar 

  • Hunter CN, Holmes NG, Jones OTG and Niederman RA (1979) Photochemical properties of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes. Biochim Biophys Acta 548: 253–266

    CAS  PubMed  Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D and Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithiumdodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 27: 3459–3467

    CAS  Google Scholar 

  • Hurlbert RE, Golecki JR and Drews G (1974) Isolation and characterization of Chromatium vinosum membranes. Arch Microbiol 101: 169–186

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Kushner DJ, Kushwaha SC and Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150: 1192–1201

    CAS  PubMed  Google Scholar 

  • Inamine GS and Niederman RA (1982) Development and growth of photosynthetic membranes of Rhodospirillum rubrum. J Bacteriol 150: 1145–1153

    CAS  PubMed  Google Scholar 

  • Inamine GS, van Houton J and Niederman RA (1984) Intracellular localization of photosynthetic membrane growth initiation sites in Rhodopseudomonas capsulata. J Bacteriol 158: 425–429

    CAS  PubMed  Google Scholar 

  • Jay F, Lambillotte M, Mühlethaler K (1983) Localization of Rhodopseudomonas viridis reaction centre and light-harvesting proteins using ferritin antibody labelling. Eur J Cell Biol 30: 1–8

    CAS  PubMed  Google Scholar 

  • Jay F, Lambillotte M, Stark W and Mühlethaler K (1984) The preparation and characterization of the native photoreceptor units from thylakoids from Rhodopseudomonas viridis EMBO J 3: 773–776

    CAS  PubMed  Google Scholar 

  • Kaiser I and Oelze J (1980a) Growth and adaptation to phototrophic conditions of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides at different temperatures. Arch Microbiol 126: 187–194

    CAS  Google Scholar 

  • Kaiser I and Oelze J (1980b) Temperature dependence in Rhodospirillum rubrum and Rhodobacter sphaeroides. Arch Microbiol 126: 195–200

    CAS  Google Scholar 

  • Kaplan S and Arntzen CJ (1982) Photosynthetic membrane structure and function. In: Govindjee (ed) Photosynthesis: Energy Conversion By Plants and Bacteria, Vol II, pp 65–157. Academic Press, New York

    Google Scholar 

  • Kaplan S, Cain BD, Donohue TJ, Shepherd WD and Yen GSL (1983) Biosynthesis of the photosynthetic membranes of Rhodopseudomonas sphaeroides. J Cell Biochem 22: 15–29

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann N, Reidl HH, Golecki JR, Garcia AF and Drews G (1982) Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from chemotrophic to phototrophic growth conditions. Arch Microbiol 131: 313–322

    Article  CAS  Google Scholar 

  • Kaufmann N, Hüdig H and Drews G (1984) Transposon Tn5 mutagenesis of genes for the photosynthetic apparatus in R. capsulata. Mol Gen Genet 198: 153–158

    Article  CAS  Google Scholar 

  • Kenyon CN (1978) Complex lipids and fatty acids of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 281–313. Plenum Press, New York

    Google Scholar 

  • Kiley PJ and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52: 50–69

    CAS  PubMed  Google Scholar 

  • Kiley PJ, Varga A and Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170: 1103–1115

    CAS  PubMed  Google Scholar 

  • King MT and Drews G (1975) The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris. Arch Microbiol 102: 219–231

    Article  CAS  PubMed  Google Scholar 

  • Kleinekofort W, Germeroth L, Van den Brock JA, Schubert D and Michel H (1992) The light-harvesting complex II from Rhodospirillum molischianum is an octamer. Biochim Biophys Acta 1140: 102–104

    CAS  Google Scholar 

  • Klug G, Kaufmann N and Drews G (1985) Gene expression of pigment-binding proteins of the bacterial photosynthetic apparatus:Transcription and assembly in the membrane of Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 82: 6485–6489

    CAS  Google Scholar 

  • Klug G, Liebetanz R and Drews G (1986) The influence of bacteriochlorophyll biosynthesis on formation of pigment-binding proteins and assembly of pigment protein complexes in Rhodopseudomonas capsulata. Arch Microbiol 146: 284–291

    Article  CAS  Google Scholar 

  • Klug G, Gad’on N, Jock S and Narro ML (1991) Light and oxygen effects share a common regulatory DNA sequence in Rhodobacter capsulatus. Mol Microbiol 5: 1235–1239

    CAS  PubMed  Google Scholar 

  • Kohorn BD and Auchincloss AH (1991) Integration of a chlorophyll-binding protein into E. coli membranes in the absence of chlorophyll. J Biol Chem 266: 12048–12052

    CAS  PubMed  Google Scholar 

  • Kuhn A, Troschel D (1992) Distinct steps in the insertion pathway of bacteriophage coat proteins. In: Neupert W and Lill R (eds) Membrane Biogenesis and Protein Targeting, pp 33–47. Elsevier, Amsterdam

    Google Scholar 

  • Lampe HH and Drews G (1972) Die Differenzierung des Membransystems von Rhodopseudomonas capsulata hinsichtlich seiner photosynthetischen und respiratorischen Funktionen. Arch Mikrobiol 84: 1–19

    Article  CAS  PubMed  Google Scholar 

  • Lampe HH, Oelze J and Drews G (1972) Die Fraktionierung des Membransystems von Rhodopseudomonas capsulata und seine Morphogenese. Arch Mikrobiol 83: 78–94

    Article  CAS  PubMed  Google Scholar 

  • Lang HP and Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochemistry, 298: 197–205

    CAS  Google Scholar 

  • Lascelles J (1959) Adaptation to form bacteriochlorophyll in Rhodobacter sphaeroides, changes in activity of enzymes concerned pyrrole synthesis. Biochem J 72: 508–518

    CAS  PubMed  Google Scholar 

  • Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 795–808. Plenum Press, New York

    Google Scholar 

  • Lavergne J and Joliot PC (1991) Restricted diffusion in photosynthetic membranes. TIBS 16: 129–134

    CAS  PubMed  Google Scholar 

  • Le Blanc HN and Beatty T (1993) Rhodobacter capsulatus puc operon; promoter location, transcript sizes and effects of deletions on photosynthetic growth. J Gen Microbiol 139: 101–109

    Google Scholar 

  • Lee JK and Kaplan S (1992a) cis-acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol 174: 1146–1157

    CAS  PubMed  Google Scholar 

  • Lee JK and Kaplan S (1992b) Isolation and characterization of trans-acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol 174: 1158–1171

    CAS  PubMed  Google Scholar 

  • Lien S and Gest H (1973) Regulation of chlorophyll synthesis in photosynthetic bacteria. Bioenergetics 4: 423–434

    CAS  Google Scholar 

  • Lommen MAJ and Takemoto J (1978a). Comparison, by freeze fracture electron microscopy, of chromatophores, spheroplastderived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides. J Bacteriol 136: 730–741

    CAS  PubMed  Google Scholar 

  • Lommen MAJ and Takemoto J (1978b) Ultrastructure of carotenoid mutant strain R-26 of Rhodopseudomonas sphaeroides. Arch Microbiol 118: 305–308

    Article  Google Scholar 

  • Löw H and Afzelius AB (1964) Subunits of the chromatophore membrane inRs. rubrum. Exp Cell Res 85: 431–434

    Google Scholar 

  • Lueking DR, Fraley RT and Kaplan S (1978) Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253: 451–457

    CAS  PubMed  Google Scholar 

  • Madigan MT, Cox JC and Gest H (1982) Photopigments in Rhodopseudomonas capsulata cells grown anaerobically in darkness. J Bacteriol 150: 1422–1429

    CAS  PubMed  Google Scholar 

  • Marrs B and Gest H (1973) Regulation of bacteriochlorophyll synthesis by oxygen in respiratory mutants of Rhodopseudomonas capsulata. J Bacteriol 114: 1052–1057

    CAS  PubMed  Google Scholar 

  • Mechler B and Oelze J (1978a) Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D. Arch Microbiol 187: 91–97

    Google Scholar 

  • Mechler B and Oelze J (1978b) Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D. II, Structural and functional differences. Arch Microbiol 187: 99–108

    Google Scholar 

  • Mechler B and Oelze J (1978c) Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D. III, Analyses of spectral alterations. Arch Microbiol 187: 109–114

    Google Scholar 

  • Meckenstock RU, Krusche K, Brunisholz RA and Zuber H (1992) The light-harvesting core-complex and the B820 subunit from Rhodopseudomonas marina. FEBS Lett 311: 135–138

    CAS  PubMed  Google Scholar 

  • Meyer R, Snozzi M, and Bachofen R (1981) Freeze fracture studies of reaction centers from Rhodospirillum rubrum in chromatophores and liposomes. Arch Microbiol 130: 125–128

    Article  CAS  Google Scholar 

  • Michels PAM and Konings WN (1978) Structural and functional properties of chromatophores and membrane vesicles from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 507: 353–368

    CAS  Google Scholar 

  • Miller KR (1979) Structure of a bacterial photosynthetic membrane. Proc Natl Acad Sci USA 76: 6415–6419

    CAS  Google Scholar 

  • Miller KR (1982) Three-dimensional structure of a photosynthetic membrane. Nature 300: 53–55

    Article  CAS  Google Scholar 

  • Mühlradt PF, Menzel J, Golecki JR and Speth V (1974) Lateral mobility and surface density of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Eur J Biochem 43: 533–539

    PubMed  Google Scholar 

  • Müller M and MacFarlane J (1994) Membrane assembly in bacteria. In: Maddy AH and Harris JP (eds) Subcellular Biochemistry: Membrane Biogenesis, Vol 22, pp 327–359. Plenum Press, New York

    Google Scholar 

  • Myers CR and Collins MLP (1987) Cell cycle-specific fluctuation in cytoplasmic membrane composition in aerobically grown Rhodospirillum rubrum. J Bacteriol 169: 5445–5451

    CAS  PubMed  Google Scholar 

  • Neunlist S, Bisseret P and Rohmer M (1988) The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanctetrol. Eur J Biochem 171: 245–252

    Article  CAS  PubMed  Google Scholar 

  • Niederman RA, Mallon DE and Parks LC (1979) Isolation of a fraction enriched in newly synthesized bacteriochlorophyll a protein complexes. Biochim Biophys Acta 555: 210–220

    CAS  PubMed  Google Scholar 

  • Oelze J (1978) Proteins exposed at the surface of chromatophores of Rhodospirillum rubrum. The orientation of isolated chromatophores. Biochim Biophys Acta 509: 450–461

    CAS  PubMed  Google Scholar 

  • Oelze J (1986) Inhibition by light of 5-aminolevulinic acid synthase in extracts from Rhodopseudomonas sphaeroides. FEMS Microbiol Lett 37: 321–323

    Article  CAS  Google Scholar 

  • Oelze J (1988) Regulation of tetrapyrrole synthesis by light in chemostat cultures of Rhodobacter sphaeroides. J Bacteriol 170: 4652–4657

    CAS  PubMed  Google Scholar 

  • Oelze J and Arnheim K (1983) Control of bacteriochlorophyll formation by oxygen and light in Rhodopseudomonas sphaeroides. FEMS Microbiol Lett 19: 197–199

    Article  CAS  Google Scholar 

  • Oelze J and Drews G (1969) Die Kinetik der Thylakoidsynthese nach Markierung der Membranen mit [214 C] Azetat. Biochim Biophys Acta 173: 448–455

    CAS  Google Scholar 

  • Oelze J and Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265: 209–239

    CAS  PubMed  Google Scholar 

  • Oelze J and Golecki JR (1975) Properties of reaction center depleted membranes of Rhodospirillum rubrum. Arch Microbiol 102: 59–64

    CAS  Google Scholar 

  • Oelze J, Biedermann M, Freund-Mölbert E and Drews G (1969) Bakteriochlorophyllgehalt und Proteinmuster der Thylakoide von Rhodospirillum rubrum. Arch Mikrobiol 66: 154–165

    Article  CAS  PubMed  Google Scholar 

  • Onishi JC and Niederman RA (1982) Rhodopseudomonas sphaeroides membranes: Alterations in phospholipid composition in aerobically and phototrophically grown cells. J Bacteriol 149: 831–839

    CAS  PubMed  Google Scholar 

  • Owens GC and Ohad I (1982) Phosphorylation of Chlamydomonas reinhardii chlorophyll membrane protein in vivo and in vitro. J Cell Biol 93: 712–718

    Article  CAS  PubMed  Google Scholar 

  • Pairoba C and Vallejos RH (1989) Protein phosphorylation in purple photosynthetic bacteria. Biochemie 71: 1039–1041

    CAS  Google Scholar 

  • Peters GA and Cellarius RA (1972) Photosynthetic membrane development in Rhodopseudomonas sphaeroides. J Bioenerg 3: 345–359

    CAS  PubMed  Google Scholar 

  • Reaveley DA and Burge RE (1972) Walls and membranes in bacteria. In: Rose AH and Tempest DW (eds) Adv Microb Physiol Vol 7 pp 1–81. Academic Press, New York

    Google Scholar 

  • Reed DW and Raveed D (1972) Some properties of the ATPase from chromatophores of Rhodopseudomonas sphaeroides and its structural relationship to the bacteriochlorophyll proteins. Biochim Biophys Acta 283: 79–91

    CAS  PubMed  Google Scholar 

  • Reed DW, Raveed D and Reporter M (1975) Localization of photosynthetic reaction centers by antibody binding to chromatophore membranes from Rhodopseudomonas spheroides strain 26. Biochim Biophys Acta 387: 368–378

    CAS  PubMed  Google Scholar 

  • Reidl H, Golecki JR and Drews G (1983) Energetic aspects of photophosphorylation capacity and reaction center content of Rhodopseudomonas capsulata grown in a turbidostat under different irradiances. Biochim Biophys Acta 725: 455–463

    CAS  Google Scholar 

  • Reidl H, Golecki JR and Drews G (1985) Composition and activity of the photosynthetic system of Rhodopseudomonas capsulata. The physiological role of the B800–850 light-harvesting complex. Biochim Biophys Acta 808: 328–333

    CAS  Google Scholar 

  • Reilly PA and Niederman RA (1986) Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides. J Bacteriol 167: 153–159

    CAS  PubMed  Google Scholar 

  • Richter P and Drews G (1991) Incorporation of light-harvesting complex I α and β polypeptides into the intracytoplasmic membrane of Rhodobacter capsulatus. J Bacteriol 173: 5336–5345

    CAS  PubMed  Google Scholar 

  • Richter P, Cortez N and Drews G (1991) Possible role of the highly conserved amino acids Trp-8 and Pro-13 in the N-terminal segment of the pigment-binding polypeptide LHI α of Rhodobacter capsulatus. FEBS Lett 285: 80–84

    Article  CAS  PubMed  Google Scholar 

  • Richter P, Brand M and Drews G (1992) Characterization of LHI− and LHI+Rhodobacter capsulatus pufA mutants. J Bacteriol 174: 3030–3041

    CAS  PubMed  Google Scholar 

  • Rohmer M, Bouvier-Nave P and Ourisson G (1984) Distribution of hopanoids triterpenes in prokaryotes. J Gen Microbiol 130: 1137–1150

    CAS  Google Scholar 

  • Saier Jr MH, Werner PK and Müller M (1989) Insertion of proteins intobacterial membranes: Mechanism, characteristics and comparisons with the eukaryotic process. Microbiol Rev 53: 333–366

    CAS  PubMed  Google Scholar 

  • Schön G and Ladwig R (1970) Bacteriochloro phyllsynthese und Thylakoid morphogenese in anaerober Dunkelkultur von Rhodospirillum rubrum. Arch Microbiol 74: 356–371

    Google Scholar 

  • Schumacher A and Drews G (1979) Effects of light intensity on membrane differentiation in Rhodopseudomonas capsulata. Biochim Biophys Acta 547: 417–428

    CAS  PubMed  Google Scholar 

  • Sganga MW and Bauer CE (1992) Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell 68: 945–954

    Article  CAS  PubMed  Google Scholar 

  • Shepherd WD, Kaplan S and Park JT (1981) Penicillin-binding proteins of Rhodopseudomonas sphaeroides and their membrane localization. J Bacteriol 147: 354–362

    CAS  PubMed  Google Scholar 

  • Shiozawa JA, Welte W, Hodapp N and Drews G (1982) Studies on the size and composition of the isolated light-harvesting B800–850 pigment-protein complex of Rhodopseudomonas capsulata. Arch Biochem Biophys 213: 473–485

    Article  CAS  PubMed  Google Scholar 

  • Snozzi M and Crofts AR (1984) Electron transport in chromatophores from Rhodopseudomonas sphaeroides GA fused with liposomes. Biochim Biophys Acta 766: 451–463

    CAS  PubMed  Google Scholar 

  • Sockett RE, Donohue TJ, Varga AR and Kaplan S (1989) Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. J Bacteriol 171:436–446

    CAS  PubMed  Google Scholar 

  • Sprague SG and Varga AR (1986) Membrane architecture of anoxygenic photosynthetic bacteria. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III, pp 603–619. Springer, Berlin

    Google Scholar 

  • Stark W, Kühlbrandt W, Wildhaber I, Wehrli E and Mühlethaler K (1984) The structure of the photoreceptor unit of Rhodopseudomonas viridis. EMBO J 3: 777–783

    PubMed  Google Scholar 

  • Stark W, Jay F and Mühlethaler K (1986) Localization of reaction centre and light-harvesting complexes in the photosynthetic unit of Rhodopseudomonas viridis. Arch Microbiol 146: 130–133

    Article  CAS  Google Scholar 

  • Stiehle H, Cortez N, Klug G and Drews G (1990) A negatively charged N-terminus in the α polypeptide inhibited formation of the light-harvesting complex I in Rhodobacter capsulatus. J Bacteriol 172: 7131–7137

    CAS  PubMed  Google Scholar 

  • Tadros MH, Frank R, Dörge B, Gad’on N, Takemoto JY and Drews G (1987) Orientation of the B800–850, B870 and reaction center polypeptides on the cytoplasmic and periplasmic surfaces of Rhodobacter capsulatus membranes. Biochemistry 26: 7680–7687

    Article  CAS  Google Scholar 

  • Tadros MH, Garcia AF, Gad’on N and Drews G (1989) Characterization of a pseudo-B870 light-harvesting complex isolated from the mutant strain Azl+ pho− of Rhodobacter capsulatus which contains B800–850 type polypeptides. Biochim Biophys Acta 976: 161–167

    CAS  Google Scholar 

  • Tadros MH, Garcia AF, Drews G, Gad’on N and Skatchkov MP (1990) Isolation and characterization of a light-harvesting complex II lacking the gamma-polypeptide from Rhodobacter capsulatus. Biochim Biophys Acta 1019: 245–249

    CAS  Google Scholar 

  • Tai, S-P and Kaplan S (1984) Purification and properties of a phospholipid transfer protein from Rhodopseudomonas sphaeroides. J Biol Chem 259: 12178–12183

    CAS  PubMed  Google Scholar 

  • Takaichi S, Gardiner AT and Cogdell R (1992) Pigment composition of light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila. Effect of light intensity. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 149–152. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takamiya K, Shioi Y, Shimada H and Arata H (1992) Blue-light inhibition of accumulation of photosynthetic pigments in Roseobacter denitrificans under anaerobic conditions. In: Murata N (ed) Research in Photosynthesis, Vol III, pp 91–94. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takemoto JY, Schonhardt T, Golecki JR and Drews G (1985) Fusion of liposomes and chromatophores of Rhodopseudomonas capsulata: Effect on photosynthetic energy transfer between B875 and reaction center complexes. J Bacteriol 162: 1126–1134

    CAS  PubMed  Google Scholar 

  • Tauschel HD and Drews G (1967) Thylakoid morphogenese bei Rhodopseudomonas palustris. Arch Mikrobiol 59: 381–404

    Article  CAS  PubMed  Google Scholar 

  • Theiler R and Niederman RA (1991) Localization of chromatophore proteins of Rhodobacter sphaeroides. I. Rapid Ca — induced fusion of chromatophores with phosphatidyl-glycerol liposomes for proteinase delivery to the luminal membrane surface. J Biol Chem 266: 23157–23162

    CAS  PubMed  Google Scholar 

  • Tichy HV, Oberlé B, Stiehle H, Schiltz E and Drews G (1989) Genes downstream from pucA and pucA are essential for formation of the B800–850 complex of Rhodobacter capsulatus. J Bacteriol 171: 4914–4922

    CAS  PubMed  Google Scholar 

  • Tichy HV, Albien KV, Gad’on N and Drews G (1991) Analysis of the Rhodobacter capsulatus puc operon: The pucC gene plays a central role in the regulation of LHII (B800–850) complex expression. EMBO J 10: 2949–2955

    CAS  PubMed  Google Scholar 

  • Troschel D and Müller M (1990) Development of a cell-free system to study the membrane assembly of photosynthetic proteins of Rhodobacter capsulatus. J Cell Biol. 111: 87–94

    Article  CAS  PubMed  Google Scholar 

  • Troschel D, Eckhardt S, Hoffschulte HK and Müller M (1992) Cell-free synthesis and membrane-integration of the reaction center subunit H from Rhodobacter capsulatus. FEMS Microbiol Lett 91: 129–134

    Article  CAS  Google Scholar 

  • Uffen RL, Sybesma C and Wolfe RS (1971) Mutants of Rhodospirillum rubrum obtained after long-term anaerobic, dark growth. J Bacteriol 108: 1348–1356

    CAS  PubMed  Google Scholar 

  • Urakami T and Komagata K (1988) Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids, and the occurrence of squalene and sterols in species of Rhodospirillaceae genera and Erythrobacter longus. J Gen Appl Microbiol 34: 67–84

    CAS  Google Scholar 

  • van Doren SR, Yun CH, Crofts AR and Gennis RB (1993) Assembly of the Rieske iron-sulfur subunit of the cytochrome bcl complex in the E. coli and Rb. sphaeroides membranes independent of the cytochrome b and cl subunits. Biochemistry 32: 628–636

    PubMed  Google Scholar 

  • van Grondelle R, van Mourik F, Visschers RW, Somson OJG and Valkunas L (1992) The bacterial photosynthetic light-harvesting antenna: Aggregation state, spectroscopy and excitation energy transfer. In: Murata N (ed) Research in photosynthesis, Vol I, pp 9–16. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Valkirs GE and Feher G (1982) Topography of reaction center subunits in the membrane of the photosynthetic bacterium, Rhodopseudomonas sphaeroides. J Cell Biol 95: 179–188

    Article  CAS  PubMed  Google Scholar 

  • Varga AR and Staehelin LA (1983) Spatial distribution in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris. J Bacteriol 154: 1414–1430

    CAS  PubMed  Google Scholar 

  • Varga AR and Staehelin LA (1985) Pigment-protein complexes from Rhodopseudomonas palustris: Isolation, characterization, and reconstitution into liposomes. J Bacteriol 161: 921–927

    CAS  PubMed  Google Scholar 

  • Wakim B and Oelze J (1980) The unique mode of adjusting the composition of the photosynthetic apparatus to different environmental conditions by Rhodospirillum tenue. FEMS Microbiol Lett 7: 221–223

    CAS  Google Scholar 

  • Wakim B, Golecki JR and Oelze J (1978) The unusual mode of altering the cellular membrane content by Rhodospirillum tenue. FEMS Microbiol Lett 4: 199–201

    Article  CAS  Google Scholar 

  • Weckesser J, Drews G and Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Ann Rev Microbiol 33: 215–239

    CAS  Google Scholar 

  • Wehrli E and Kübler O (1980) The two-dimensional lattice of the photosynthetic membrane of Rhodopseudomonas viridis. In: Baumeister W and Vogell W (eds) Electron Microscopy of Molecular Dimensions, pp 56–88. Springer Publ, Berlin

    Google Scholar 

  • Wieseler B and Müller M (1993) Translocation of precytochrome c2 into intracytoplasmic membrane vesicles of Rhodobacter capsulatus requires a peripheral membrane protein. Mol Microbiol 7: 167–176

    CAS  PubMed  Google Scholar 

  • Wieseler B, Schiltz E and M“ller M (1992) Identification and solubilization of a signal peptidase from the phototrophic bacterium Rhodobacter capsulatus. FEBS Lett 298: 273–276

    Article  CAS  PubMed  Google Scholar 

  • Yen GSL, Cain BD and Kaplan S (1984) Cell-cycle specific biosynthesis of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 777: 41–55

    CAS  PubMed  Google Scholar 

  • Yildiz FH, Gest H and Bauer CE (1991) Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol 173: 5502–5506

    CAS  PubMed  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 and antenna, and flanking polypeptides from Rhodobacter capsulata. Cell 37: 949–957

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D, Jasper P and Marrs B (1978) Light-induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata. Arch Biochem Biophys 191: 625–631

    Article  CAS  PubMed  Google Scholar 

  • Zsebo K and Hearst JE (1984) Genetic physical mapping of a photosynthetic gene cluster from Rhodopseudomonas capsulata. Cell 37: 937–947

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Drews, G., Golecki, J.R. (1995). Structure, Molecular Organization, and Biosynthesis of Membranes of Purple Bacteria. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics