Skip to main content

Structured Simulation-Based Analog Design Synthesis

  • Chapter
Analog Circuit Design
  • 614 Accesses

Abstract

Early generations of analog synthesis tools failed to migrate into mainstream use primarily because of difficulties in reconciling the simplified models required for synthesis with the industrial-strength simulation environments required for validation. We have recently seen the emergence of simulation-based synthesis tools that can size/bias a fixed circuit topology by exploiting the same simulation environment created to validate the sized circuit. These methods work remarkably well across a range of difficult analog circuits, and augmented with suitable macromodeling, have also been applied successfully to system-level designs. In this paper we review the motivation and architecture of simulation-based analog synthesis tools, and survey a few recent results from industrial designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Ochotta, R.A. Rutenbar, L.R. Carley, “Synthesis of High-Performance Analog Circuits and ASTRX/OBLX,” IEEE Trans. CAD, vol. 15, no. 3, Mar. 1996.

    Google Scholar 

  2. M. Krasnicki, R. Phelps, R. A. Rutenbar, L.R. Carley, “MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells,” Proc. ACM/IEEE DAC, June 1999.

    Google Scholar 

  3. R. Phelps, M. Krasnicki, R.A. Rutenbar, L.R. Carley, J.R. Hellums, “ANA-CONDA: Robust Synthesis of Analog Circuits Via Stochastic Pattern Search,” Proc. IEEE Custom Integrated Circuits Conference, May 1999.

    Google Scholar 

  4. R. Phelps, M. Krasnicki, R.A. Rutenbar, L.R. Carley, J. Hellums, “A case study of synthesis for industrial-scale analog IP: Redesign of the equalizer/filter frontend for an ADSL CODEC,” Proc. ACM/IEEE DAC, June 2000.

    Google Scholar 

  5. R. Phelps, M. Krasnicki, R. A. Rutenbar, L. R. Carley, J. R. Hellums, “Anaconda: Simulation-based synthesis of analog circuits via stochastic pattern search,” IEEE Trans. CAD, vol. 19, no. 6, June 2000.

    Google Scholar 

  6. P. J. Vancorenland, G. Van der Plas, M. Steyaert, G. Gielen, and W. Sansen, “A Layout-aware Synthesis Methodology for RF Circuits”, Proc. ACM/IEEE ICCAD, Nov 2001.

    Google Scholar 

  7. P. Vancorenland, C. De Ranter, M. Steyaert, G. Gielen, “Optimal RF Design Using Smart Evolutionary Algorithms,” Proc. ACM/IEEE DAC, June 2000.

    Google Scholar 

  8. R. Schwenker, J. Eckmueller, H. Graeb, K. Antriech, “Automating the Sizing of Analog CMOS Circuits by Consideration of Structural Constraints,” Proc DATE99, March 1999. vol. 19, no. 6, June 2000.

    Google Scholar 

  9. M.J. Krasnicki, R. Phelps, J.R. Hellums, R.A. Rutenbar, L.R. Carley, “ASF: A Practical Simulation-Based Methodology for the Synthesis of Custom Analog Circuits,” Proc. ACM.IEEE ICC AD, Nov. 2001.

    Google Scholar 

  10. S. Dugalleix, F. Lemery, A. Shah, “Technology migration of a high-performance CMOS amplifier using an automated front-to-back analog design flow,” Proc Design Auto. & Test in Europe (DATE), March 2002.

    Google Scholar 

  11. E. Hennig, R. Sommer, L. Charlack, “An automated approach for sizing complex analog circuits in a simulation-based flow,” Proc Design Auto. & Test in Europe (DATE), March 2002.

    Google Scholar 

  12. T. McConaghy, “Intelligent Systems Solutions for Analog Synthesis,” Integrated Communications Design, Penwell, January, 2002.

    Google Scholar 

  13. E. Ochotta, T. Mukherjee, R.A. Rutenbar, L.R. Carley, Practical Synthesis of High-Performance Analog Circuits, Kluwer Academic Publishers, 1998.

    Google Scholar 

  14. G.G.E. Gielen and R.A. Rutenbar, “Computer-Aided Design of Analog and Mixed-Signal Integrated Circuits, Proc IEEE, vol. 88, no. 12, Dec. 2000.

    Google Scholar 

  15. M. Degrauwe et al., “Towards an analog system design environment,” IEEE JSSC, vol. sc-24, no. 3, June 1989.

    Google Scholar 

  16. H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: a compiler for MOS operational amplifiers,” IEEE Trans. CAD, vol. 9, no. 2, Feb. 1990.

    Google Scholar 

  17. G. Gielen, et al, “Analog circuit design optimization based on symbolic simulation and simulated annealing,” IEEE JSSC, vol. 25, June 1990.

    Google Scholar 

  18. F. Leyn, W. Daems, G. Gielen, W. Sansen, “A Behavioral Signal Path Modeling Methodology for Qualitative Insight in and Efficient Sizing of CMOS Opamps,” Proc. ACM/IEEE ICCAD, 1997.

    Google Scholar 

  19. P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “Integer Programming Based Topology Selection of Cell Level Analog Circuits,” IEEE Trans. CAD, vol. 14, no. 4, April 1995.

    Google Scholar 

  20. W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS Opamp Synthesis by Means of a Genetic Algorithm,” Proc. 32nd ACM/IEEE DAC, 1995.

    Google Scholar 

  21. R. Harjani, R.A. Rutenbar and L.R. Carley, “OASYS: a framework for analog circuit synthesis,” IEEE Trans. CAD, vol. 8, no. 12, Dec. 1989.

    Google Scholar 

  22. B.J. Sheu, et al., “A Knowledge-Based Approach to Analog IC Design,” IEEE Trans. Circuits and Systems, CAS-35(2):256–258, 1988.

    Google Scholar 

  23. E. Berkcan, et al., “Analog Compilation Based on Successive Decompositions,” Proc. of the 25th IEEE DAC, pp. 369–375, 1988.

    Google Scholar 

  24. J. P. Harvey, et al., “STAIC: An Interactive Framework for Synthesizing CMOS and BiCMOS Analog Circuits,” IEEE Trans. CAD, Nov. 1992.

    Google Scholar 

  25. C. Makris and C. Toumazou, “Analog IC Design Automation Part II—Automated Circuit Correction by Qualitative Reasoning,” IEEE Trans. CAD, vol. 14, no. 2, Feb. 1995.

    Google Scholar 

  26. A. Torralba, J. Chavez and L. Franquelo, “FASY: A Fuzzy-Logic Based Tool for Analog Synthesis,” IEEE Trans. CAD, vol. 15, no. 7, July 1996.

    Google Scholar 

  27. M. Hershenson, S. Boyd, T. Lee, “GPCAD: a Tool for CMOS Op-Amp Synthesis”, Proc. ACM/IEEE ICCAD, pp. 296–303, 1998.

    Google Scholar 

  28. G. Gielen, P. Wambacq, and W. Sansen, “Symbolic ANalysis Methods and Applications for Analog Circuits: A Tutorial Overview,” Proc. IEEE, vol. 82, no. 2, Feb., 1990.

    Google Scholar 

  29. C.J. Shi, X. Tan, “Symbolic Analysis of Large Analog Circuits with Determinant Decision Diagrams,” Proc. ACM/IEEE ICCAD, 1997.

    Google Scholar 

  30. Q. Yu and C. Sechen, “A Unified Approach to the Approximate Symbolic Analysis of Large Analog Integrated Circuits,” IEEE Trans. Circuits and Sys., vol. 43, no. 8, August 1996.

    Google Scholar 

  31. F. Medeiro, F.V. Fernandez, R. Dominguez-Castro and A. Rodriguez-Vasquez, “A Statistical Optimization Based Approach for Automated Sizing of Analog Cells,” Proc. ACM/IEEE ICCAD, 1994.

    Google Scholar 

  32. Y-C Ju, V.B. Rao and R. Saleh, “Consistency Checking and Optimization of Macromodels”, IEEE Transactions on CAD, August 1991.

    Google Scholar 

  33. B. Antao and A. Brodersen, “ARCHGEN: Automated Synthesis of Analog Systems”, IEEE Transaction on VLSI Systems, June 1995.

    Google Scholar 

  34. F. Medeiro, B. Pérez-Verdú, A. Rodríguez-Vázquez, J. Huertas, “A vertically-integrated tool for automated design of SD modulators,” IEEE Journal of Solid-State Circuits, Vol. 30, No. 7, pp. 762–772, July 1995.

    Article  Google Scholar 

  35. A. Doboli, et al, “Behavioral synthesis of analog systems using two-layered design space exploration,” Proc. ACM/IEEE DAC, June 1999.

    Google Scholar 

  36. W. Nye, et al, “DELIGHT.SPICE: an optimization-based system for the design of integrated circuits,” IEEE Trans. CAD, vol. 7, April 1988.

    Google Scholar 

  37. A.R. Conn, R.A. Haud, C. Viswesvariah, C.W. Wu, “Circuit optimization via adjoint lagrangians,” Proc. ACM/IEEE ICCAD, Nov. 1997.

    Google Scholar 

  38. R. Hester, et al., “CODEC for Echo-Canceling, Full-Rate ADSL Modems,” IEEE Inťl Solid-state Circuits Conference, pages 242–243. 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rutenbar, R.A. (2002). Structured Simulation-Based Analog Design Synthesis. In: Steyaert, M., van Roermund, A., Huijsing, J.H. (eds) Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-47951-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47951-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7216-1

  • Online ISBN: 978-0-306-47951-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics