Skip to main content

Fabrication of Nanoarchitectures Using Lithographic Techniques

  • Chapter
Self-Assembled Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 526 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. E. Laibinis, R. G. Nuzzo, and G. M. Whitesides, Structure of monolayers formed by coadsorption of 2 normal-alkanethiols of different chain lengths on gold and its relation to wetting, J. Phys. Chem. 96, 5097–5105 (1992).

    Article  CAS  Google Scholar 

  2. C.E.D. Chidsey, Free-energy and temperature-dependence of electron-transfer at the metal-electrolyte interface, Science 251, 919–922 (1991).

    CAS  Google Scholar 

  3. J. Y. Huang, D. A. Dahlgren, and J. C. Hemminger, Photopatterning of self-assembled alkalinethiolate monolayers on gold—a simple monolayer photoresist utilizing aqueous chemistry, Langmuir 10, 626–628 (1994).

    Article  CAS  Google Scholar 

  4. M. J. Tarlov, D. R. F. Burgess, and G. Gillen, UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver, J. Am. Chem. Soc. 115, 5305–5306 (1993).

    Article  CAS  Google Scholar 

  5. E. W. Wollman, D. Kang, C. D. Frisbie, I. M. Lorkovic, and M. S. Wrighton, Photosensitive self-assembled monolayers on gold—photochemistry of surface-confined aryl azide and cyclopenta-dienylmanganese-tricarbonyl, J. Am. Chem. Soc. 116, 4395 (1994).

    Article  CAS  Google Scholar 

  6. S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. A. T. Stryer, and D. Solas, Light-directed, spatially addressable parallel chemical synthesis, Science 251, 767–773 (1991).

    CAS  Google Scholar 

  7. N.L. Abbott, A. Kumar, and G. M. Whitesides, Using micromachining, molecular self-assembly, and wet etching to fabricate 0.1-1-mm m-scale structures of gold and silicon, Chem. Mater. 6, 596–602 (1994).

    Article  CAS  Google Scholar 

  8. J. A. M. Sondag-Huethorst, H. R. J. Van-Helleputte, and L. G. J. Fokkink, Generation of celectrochemically deposited metal patterns means of electron-beam (nano) lithography of self-assembled monolayer resists, Appl. Phys. Lett. 64, 285 (1994).

    Article  CAS  Google Scholar 

  9. R. C. Tiberio et al., Self-assembled monolayers electron-beam resist on GaAs, Appl. Phys. Lett. 62, 476–478 (1993).

    Article  CAS  Google Scholar 

  10. K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Philips, M. Prentiss, and G. M. Whitesides, Microlithography by using neutral metastable atoms and self-assembled monolayers, Science 269, 1255–1257 (1995).

    CAS  Google Scholar 

  11. A. Kumar, N. L. Abbott, E. Kim, H. A. Biebuyck, and G. M. Whitesides, Patterned self-assembled monolayers and mesoscale phenomena, Acc. Chem. Res. 28, 219–226 (1995).

    Article  CAS  Google Scholar 

  12. Y. N. Xia and G. M. Whitesides, Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontactprinting, J. Am. Chem. Soc. 117, 3274 (1995).

    CAS  Google Scholar 

  13. T. M. Bloomstein, M. Rothschild, R. R. Kunz, D. E. Hardy, R. B. Goodman, and S. T. Palmacci, Critical issues in 157 nm lithography, J. Vac. Sci. Technol., B 16, 3154–3157 (1998).

    Article  CAS  Google Scholar 

  14. T. M. Bloomstein, M. W. Horn, M. Rothschild, R. R. Kunz, S. T. Palmacci, and R. B. Goodman, Lithography with 157 nm lasers, J. Vac. Sci. Technol., B 15, 2112–2116 (1997).

    Article  CAS  Google Scholar 

  15. F. Cerrina, X-ray imaging: Applications to patterning and lithography, J. Phys. D: Appl. Phys. 33, R103–R116 (2000).

    Article  CAS  Google Scholar 

  16. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, Extreme ultraviolet lithography, J. Vac. Sci. Techol. B 16, 3142–3149 (1998).

    CAS  Google Scholar 

  17. Y. Chen and A. Pepin, Nanofabrication: Conventional and nonconventional methods, Electrophoresis 22, 187–207 (2001).

    CAS  Google Scholar 

  18. Z. N. Yu, S. J. Schablitsky, and S. Y. Chou, Nanoscale GaAs metal semiconductor metal photodetectors fabricated using nanoimprint lithography, Appl. Phys. Lett. 74, 2381–2383 (1999).

    CAS  Google Scholar 

  19. M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, Low temperature nanoimprint lithography using silicon nitride molds, Microelectro. Engi. 57–58, 367–373 (2001).

    Google Scholar 

  20. W. Zhang and S. Y. Chou, Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers, Appl. Phys. Lett. 79, 845–847 (2001).

    CAS  Google Scholar 

  21. S. Y. Chou, Nanoimprint lithography and lithographically induced self-assembly, MRS Bull. 26, 512–517 (2001).

    CAS  Google Scholar 

  22. C. K. Malek, K. H. Jackson, W. D. Bonivert, and J. Hruby, Masks for high aspect ratio X-ray lithography, J. Micromech. Microeng. 6, 228–235 (1996).

    Article  CAS  Google Scholar 

  23. S. Tsuboi, Y. Tanaka, T. Iwamoto, H. Sumitani, and Y. Nakayama, Recent progress in 1X X-ray mask technology: Feasibility study using ASET-NIST format TaXN X-ray masks with 100 nm rule 4 Gbit dynamic random access memory test patterns, J. Vac. Sci. Technol. B 19, 2416–2422 (2001).

    Article  CAS  Google Scholar 

  24. G. Feiertag, W. Ehrfeld, H. Lehr, A. Schmidt, and M. Schmidt, Accuracy of structure transfer in deep X-ray lithography, Microelectron. Eng. 35, 557–560 (1997).

    Article  CAS  Google Scholar 

  25. W. Ehrfeld, V. Hessel, H. Lowe, C. Schulz, and L. Weber, Materials of LIGA technology, Microsyst. Technol. 5, 105–112 (1999).

    Article  Google Scholar 

  26. W. Ehrfeld and A. Schmidt, Recent developments in deep X-ray lithography, J. Vac. Sci. Technol. B 16, 3526–3534 (1998).

    Article  CAS  Google Scholar 

  27. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Electron-beam lithography: Resolution limits and applications, Appl. Surf. Sci. 164, 111–117 (2000).

    Article  CAS  Google Scholar 

  28. Y. Chen, D. Macintyre, and S. Thoms, A study of electron forward scattering effects on the foot width of T-gates fabricated using a bilayer of PMMA and UVIII, Microelectron. Eng. 53, 349–352 (2000).

    CAS  Google Scholar 

  29. Y. Chen, D. Macintyre, and S. Thoms, Electron-beam lithography process for T-and Gamma-shaped gate fabrication using chemically amplified DUV resistsand PMMA, J. Vac. Sci. Technol. B 17, 2507–2511 (1999).

    CAS  Google Scholar 

  30. G. Owen, Proximity effect correction in electron-beam lithography, Opt. Eng. 32, 2446–2451 (1993).

    CAS  Google Scholar 

  31. C. N. Bergl und, N. I. Maluf, J. Ye, G. Owen, R. Borwning, and R. F. W. Pease, Spatial correlation of electron-beam mask errors and the implications for integrated-circuit yield, J. Vac. Sci. Technol. B 10, 2633–2637 (1992).

    Google Scholar 

  32. J. S. Huh, M. I. Shepard, and J. Melngailis, Focused ion-beam lithography, J. Vac. Sci. Technol. B 9, 173–175 (1991).

    Article  CAS  Google Scholar 

  33. X. Xu, A. D. Dellaratta, J. Sosonkina, and J. Melngailis, Focused ion-beam induced deposition and ion milling as a function of angle of ion incidence, J. Vac. Sci. Technol. B 10, 2675–2680 (1992).

    Article  CAS  Google Scholar 

  34. J. Melngailis, Focused ion-beam lithography, Nucl. Instrum. Methods Phys. Res. Sect. B–Beam Interactions with Materials and Atoms 80–81, 1271–1280 (199).

    Google Scholar 

  35. J. Melngailis, A. A. Mondelli, I. L. Berry, and R. Mohondro, A review of ion projection lithography, J. Vac. Sci. Technol. B 16, 927–957 (1998).

    Article  CAS  Google Scholar 

  36. C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105, 5599–5611 (2001).

    Article  CAS  Google Scholar 

  37. A. Stein, Sphere templating methods for periodic porous solids, Microporous Mesoporous Mater. 44, 227–239 (2001).

    Google Scholar 

  38. S. H. Park, D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas, Adv. Mater. 10, 1028–1038 (1998).

    CAS  Google Scholar 

  39. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Porous silica via colloidal crystallization, Nature 389, 447–448 (1997).

    Article  CAS  Google Scholar 

  40. O. D. Velev and A. M. Lenhoff, Colloidal crystals as templates for porous materials, Currr. Opin. Colloid Interface Sci. 5, 56–63 (2000).

    CAS  Google Scholar 

  41. O.D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, Nanostructured porous materials templated by colloidal crystals: From inorganic oxides to metals, Abstracts of Papers of the American Chemical Society 219, 425-PHYS (2000).

    Google Scholar 

  42. J. Cizeron and V. Colvin, Preparation of nanocrystalline quartz under hydrothermal conditions, Abstracts of Papers of the American Chemical Society 218, 545-INOR (1999).

    Google Scholar 

  43. G. Binnig, Force microscopy, Ultramicroscopy 42, 7–15 (1992).

    Article  Google Scholar 

  44. G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, Atomic resolution with atomic force microscope, Surf. Sci. 189, 1–6 (1987).

    Google Scholar 

  45. G. Binnig and H. Rohrer, Scanning tunneling microscopy from birth to adolescence, Angew. Chem Int. Ed. Engl. 26, 606–614 (1987).

    Article  Google Scholar 

  46. F. Ohnesorge and G. Binnig, True atomic-resolution by atomic force microscopy through repulsive and attractive forces, Science 260, 1451–1456 (1993).

    CAS  Google Scholar 

  47. G.-Y. Liu, S. Xu, and Y. Qian, Nanofabrication of self-assembled monolayers using scanning probe lithography, Acc. Chem. Res. 33, 457–466 (2000).

    Article  CAS  Google Scholar 

  48. S. Xu, P. E. Laibinis, and G.-Y. Liu, Accelerating self-assembly on gold a spatial confinement effect, J. Am. Chem. Soc. 120, 9356–9361 (1998).

    CAS  Google Scholar 

  49. G. E. Poirier, Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy, Chem. Rev. 97, 1127 (1997).

    Article  Google Scholar 

  50. G.E. Poirier, E. D. Pylant, and J. M. White, Crystalline structures of pristine and hydrated mercaptohexanol self-assembled monolayers an Au(111), J. Chem. Phys. 105, 2089–2092 (1996).

    Article  CAS  Google Scholar 

  51. G. E. Poirier and M. J. Tarlov, The c(4×2) Superlattice of N-Alkanethiol monolayers self-assembled an Au(111), Langmuir 10, 2853–2856 (1994).

    CAS  Google Scholar 

  52. P. E. Poirier, E. D. Pylant, and J. M. White, Crystalline structures of pristine and hydrated mercaptohexanol self-assembled monolayers on Au(111), J. Chem. Phys. 105, 2089 (1996).

    Article  CAS  Google Scholar 

  53. P. E. Poirier and M. J. Tarlor, The c(4×2) Superlattice of N-alkanethiol monolayers self-assembled an Au(111), Langmuir 10, 2853 (1994).

    CAS  Google Scholar 

  54. P. E. Poirier, M. J. Tarlor, and H. E. Rushmeier, Two-dimensional liquid phase and Pxv3 phase of alkanethiol self-assembled monolayer on Au(111), Langmuir 10, 3383 (1994).

    CAS  Google Scholar 

  55. H. J. Butt, K. Seifert, and E. Bamberg, Imaging molecular defects in alkanethiol monolayers with an atomic-force microscope, J. Phys. Chem. 97, 7316–7320 (1993).

    Article  CAS  Google Scholar 

  56. K. Wadu-Mesthrige, N. A. Amro, and G.-Y. Liu, Immobilization of proteins on self-assembled monolayers, Scanning 22, 380–388 (2000).

    CAS  Google Scholar 

  57. N. A. Amro, L. P. Kotra, K. Wadu-Mesthrige, A. Bulchev, S. Mobashery, and G.-Y. Liu, Structural basis of the Escherichia coli outer-membrane permeability, Proc. SPIE 3607, 108–122 (1999).

    CAS  Google Scholar 

  58. N. A. Amro, L. P. Kotra, K. Wadu-Mesthrige, A. Bulchev, S. Mobashery, and G.-Y. Liu, High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: The structural basis for permeability, Langmuir 16, 2789–2796 (2000).

    CAS  Google Scholar 

  59. A. M. Belcher, P. K. Hansma, E. L. Hu, G. D. Stucky, and D. E. Morse, Proteins controlling crystal phase, orientation and morphology in biocomposite materials, Abstracts of Papers of the American Chemical Society 214, 56-MTLS (1997).

    Google Scholar 

  60. C. M. Kacher, I. M. Weiss, R. J. Stuart, C.-F. Schmidt, P. K. Hansma, M. Radmacher, and M. Fritz, Imaging microtubules and kinesin decorated microtubules using tapping mode atomic force microscopy in fluids, Eur. Biophys. J. Biophys. Lett. 28, 611–620 (2000).

    CAS  Google Scholar 

  61. S. Kasas, N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G. Hansma, Biological applications of the AFM: From single molecules to organs, Int. J. Imaging Syst. Technol. 8, 151–161 (1997).

    Article  Google Scholar 

  62. B. L. Smith, D. R. Gallie, H. Le, and P. K. Hansma, Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy, J. Struct. Biol. 119, 109–117 (1997).

    Article  CAS  Google Scholar 

  63. K. Wadu-Mesthrige, N. A. Amro, J. C. Garno, S. Xu, and G.-Y. Liu, Fabrication of nanometersized protein patterns using atomic force microscopy and selective immobilization, Biophys. J. 80, 1891–1899 (2001).

    CAS  Google Scholar 

  64. P. Avouris, Manipulation of matter at the atomic and molecular levels, Acc. Chem. Res. 28, 95–102 (1995).

    Article  CAS  Google Scholar 

  65. I. W. Lyo and P. Avouris, Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991).

    CAS  Google Scholar 

  66. B. C. Stipe, M. A. Bezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Single-molecule dissociation by tunneling electrons, Phys. Rev. Lett. 78, 4410–4413 (1997).

    Article  CAS  Google Scholar 

  67. R. M. Nyffenegger and R. M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991, Chem. Rev. 4, 1195 (1997).

    Google Scholar 

  68. B. J. McIntyre, M. Salmeron, and G. A. Somorjai, Nanocatalysis by the tip of a scanning tunneling microscope operating inside a reactor cell, Science 265, 1415–1418 (1994).

    CAS  Google Scholar 

  69. B. J. McIntyre, M. Salmeron, and G. A. Somorjai, Spatially (nanometer) controlled hydrogenation and oxidation of carbonaceous clusters by the platinum tip of a scanning tunneling microscope operating inside a reactor cell, Catal. Lett. 39, 5–17 (1996).

    Article  CAS  Google Scholar 

  70. W. T. Muller, D. L. Klein, T. Lee, J. Clarke, P.L. Mceuen, and P. G. Schultz, A strategy for the chemical synthesis of nanostructures, Science 268, 272–273 (1995).

    Google Scholar 

  71. R. D. Piner, S. Hong, and C. A. Mirkin, Improved imaging of soft materials with modified AFM tips, Langmuir 15, 5457–5460 (1999).

    Article  CAS  Google Scholar 

  72. R. D. Piner and C. A. Mirkin, Effect of water on lateral force microscopy inair, Langmuir 13, 6864–6868 (1997).

    Article  CAS  Google Scholar 

  73. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Dip-pen nanolithography, Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  74. D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 244, 524–526 (1990).

    Google Scholar 

  75. W. Ho, Inducing and viewing bond selected chemistry with tunneling electrons, Acc. Chem. Res. 31, 567 (1998).

    Article  CAS  Google Scholar 

  76. C. B. Ross, L. Sun, and R. M. Crooks, Scanning probe lithography. 1. Scanning tunneling microscope induced lithography of self-assembled N-alkanethiol monolayer resists, Langmuir 9, 632 (1993).

    Article  CAS  Google Scholar 

  77. J. K. Schoer, F. P. Zamborini, and R. M. Crooks, Scanning probe lithography. 3. Nanometerscale electrochemical patterning of Au and organic resists in the absence of intentionally added solvents or electrolytes, J. Phys. Chem. 100, 11086–11091 (1996).

    Article  CAS  Google Scholar 

  78. P. Zeppenfeld, C. P. Lutz, and D. M. Eigler, Manipulating atoms and molecules with a scanning tunneling microscope, Ultramicroscopy 42–44, 128–133 ((1992).

    Google Scholar 

  79. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993).

    CAS  Google Scholar 

  80. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Confinement of electrons to quantum corrals on a metal-surface, Science 262, 218–220 (1993).

    CAS  Google Scholar 

  81. M. F. Crommie, C. P. Lutz, D. M. Eigler, and E. J. Heller, Waves on a metal-surface and quantum corrals, Surf. Rev. Lett. 2, 127–137 (1995).

    Article  CAS  Google Scholar 

  82. M. F. Crommie, C. P. Lutz, D. M. Eigler, and E. J. Heller, Quantum corrals, Physica D 83, 98–108 (1995).

    Article  Google Scholar 

  83. E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Eigler, Scattering and absorption of surface electron waves in quantum corrals, Nature 369, 464–466 (1994).

    Article  Google Scholar 

  84. H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Quantum mirages formed by coherent projection of electronic structure, Nature 403, 512–515 (2000).

    Article  CAS  Google Scholar 

  85. T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim, Controlled roomtemperature positioning of individual molecules: Molecule flexure and motion, Science 271, 181–184 (1996).

    CAS  Google Scholar 

  86. S. W. Hla, L. Bartels, G. Meyer, and K. H. Rieder, Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  Google Scholar 

  87. S. W. Hla, G. Meyer, and K. H. Rieder, Inducing single-molecule chemical reactions with a UHV-STM: A new dimension for nano-science and technology, Phys. Rev. Lett. 2, 361–366 (2001).

    CAS  Google Scholar 

  88. G. Meyer, L. Bartels, and K. H. Rieder, Atom manipulation with the STM: Nanostructuring, tip functionalization, and femtochemistry, Comput. Mater. Sci. 20, 443–450 (2001).

    Article  CAS  Google Scholar 

  89. J. J. Schulz, R. Koch, and K. H. Rieder, New mechanism for single atom manipulation, Phys. Rev. Lett. 84, 4597–4600 (2000).

    CAS  Google Scholar 

  90. E. S. Snow and P. M. Campbell, Afm fabrication of sub-10-nanometer metal-oxide devices with in situcontrol of electrical-properties, Science 270, 1639–1641 (1995).

    CAS  Google Scholar 

  91. S. Xu and G. Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13, 127–129 (1997).

    Google Scholar 

  92. S. Xu, S. Miller, P. E. Laibinis, and G.-Y. Liu, Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting, Langmuir 15, 7244–7251 (1999).

    CAS  Google Scholar 

  93. K. Wadu-Mesthrige, S. Xu, N. A. Amro and G.-Y. Liu, Fabrication and imaging of nanometersized protein patterns, Langmuir 15, 8580–8583 (1999).

    Article  CAS  Google Scholar 

  94. W. Norde, M. Giesbers, and H. Pingsheng, Langmuir Blodgett films of polymerized 10,12-pentacosadionic acid as substrates for protein adsorption, Colloids Surf. B: Biointerfaces 5, 255 (1995).

    Article  CAS  Google Scholar 

  95. J. Buijs, D. W. Britt, and H. Vladimer, Human growth hormone adsorption kinetics and conformation on self-assembled monolayers, Langmuir 14, 335 (1998).

    Article  CAS  Google Scholar 

  96. N. Patel, M. C. Davies, M. Hartshorne, R. J. Heaton, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, Immobilization of protein molecules onto homogeneous and mixed carboxylateterminatcd self-assembled monolayers, Langmuir 13, 6485 (1997).

    Article  CAS  Google Scholar 

  97. C. F. Blake, D. F. Koenig, G. A. Mair, A. C. T. Morth, D. C. Phillips, and V. R. Sarma, Structure of hen egg-white lysozyme, Nature 206, 757 761 (1965).

    Google Scholar 

  98. S. Cruchon-Dupeyrat, S. Porthun, and G. Y. Liu, Nanofabrication using computer-assisted design and automated vector-scanning probe lithography, Appl. Surf. Sci. 175–176, 636–642 (2001).

    Google Scholar 

  99. C. Baur, B. C. Gazen, B. Koel, T. R. Ramachandran, A. A. G. Requicha, and L. Zini, Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Technol. B 15, 1577–1580 (1997).

    Article  CAS  Google Scholar 

  100. T. R. Ramachandran, C. Baur, A. Bugacov, A. Madhukar, B. E. Koel, A. A. G. Requicha, and C. Gazen, Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope, Nanotechnology 9, 237–245 (1998).

    Article  CAS  Google Scholar 

  101. S. H. Hang and C. A. Mirkin, A nanoplotter with both parallel and serial writing capabilities, Science 288, 1808–1811 (2000).

    Google Scholar 

  102. S. H. Hong, J. Zhu, and C. A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science 286, 523–525 (1999).

    Article  CAS  Google Scholar 

  103. G. Binnig and H. Rohrer, Scanning tunneling microscopy (Reprinted from IBM Journal of Research and development, vol. 30, 1986), IBM J. Res. Development 44, 279–293 (2000).

    CAS  Google Scholar 

  104. M. Despont, et al., VLSI-NEMS chip for parallel AFM data storage, Sens. Actuators, A: Physical 80, 100–107 (2000).

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Fabrication of Nanoarchitectures Using Lithographic Techniques. In: Self-Assembled Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-47941-9_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47941-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47299-2

  • Online ISBN: 978-0-306-47941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics