Skip to main content

Nanocrystal Self-Assembly

  • Chapter
Self-Assembled Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 549 Accesses

Summary

Self-assembling process is fundamental in biological systems in nature. Synthesis of new materials using self-assembly is an effective approach that has the potential of producing high quality, large quantity, and chemically and structurally controlled new materials. This chapter reviewed the current status of the ordered self-assembled nanocrystals, ordered, mesoporous nanostructured materials, and hierarchically ordered materials. Most of the results are rather exciting, but substantial research is needed to improve and control the synthesis quality at a large yield. Growth of large-size single-crystalline slef-assembled nanocrystal structures is crucial for their applications. Template assisted synthesis techniques are possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ph. Buffat and J. P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13, 2287–2298 (1976).

    Article  CAS  Google Scholar 

  2. M. Schmidt, R. Kusche, B. von Issendorff, and H. Haberland, Irregular variations in the melting point of size-selectedatomic clusters, Nature 393, 238–240 (1998).

    Article  CAS  Google Scholar 

  3. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Melting of semiconductor nanocrystals, Science 256, 1425–1427 (1992).

    Article  CAS  Google Scholar 

  4. A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  5. C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse Cde (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  6. P. Buseck, L. Eyring, and J. Cowley (eds) High Resolution Transmission Electron Microscopy, Theory and Applications (Oxford University Press, London, 1989).

    Google Scholar 

  7. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science 28, 1924–1926 (1996).

    Article  Google Scholar 

  8. Z. L. Wang, T. S. Ahmadi, and M. A. El-Sayed, Steps, Ledges and kinks on the surfaces of platinum nanoparticles of different shapes, Surf. Sci. 380, 302–310 (1997).

    Article  CAS  Google Scholar 

  9. S. Ino, Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum, J. Phys. Soc. Jpn. 21, 346–362 (1966).

    Article  CAS  Google Scholar 

  10. J. G. Allpress and J. V. Sanders. The structure and orientation of crystals in deposits of metals on mica, Surf. Sci. 7, 1–25 (1967).

    Article  Google Scholar 

  11. L. D. Marks, Experimental studies of small-particle structures, Rep. Prog. Phys. 57, 603–649 (1994), and the references therein.

    Article  CAS  Google Scholar 

  12. C. Y. Yang, M. J. Yacaman, and K. Heinemann, Crystallography of decahedral and icosahedral particles, J. Cryst. Growth 47, 283–290 (1979).

    Article  CAS  Google Scholar 

  13. P.-A. Buffat, M. Flüeli, R. Spycher, P. Stadelmann, and J.-P. Borel, Crystallographic structure of small gold particles studied by high-resolution electron-microscopy, Faraday Discuss. 92, 173–187 (1991).

    Article  CAS  Google Scholar 

  14. C. L. Cleveland, U. Landman, T. G. Schaaff, M. N. Shafigullin, P. W. Stephens, and R. L. Whetten, Structural evolution of smaller gold nanocrystals: The truncated decahedral motif, Phys. Rev. Lett. 79, 1873–1876 (1997).

    Article  CAS  Google Scholar 

  15. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. Wang, Gold nanorods: Electrochemical synthesis and optical properties, J. Phys. Chem. B 101(34), 6661–6664 (1997).

    Article  CAS  Google Scholar 

  16. Z. L. Wang, M. Mohamed, S. Link, and M. A. El-Sayed, Crystallographic facets and shapes of gold nanorods of different aspect ratios, Surf. Sci. 440, L809–L814 (1999).

    Article  CAS  Google Scholar 

  17. Z. L. Wang, R. P. Gao, B. Nikoobakht, and M. A. El-Sayed, Surface reconstruction of the ubstable {110} surface in Gold Nanorods, J. Phys. Chem. B 104, 5417–5420 (2000).

    Article  CAS  Google Scholar 

  18. R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke, and U. Landman, Nanocrystal gold molecules, Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  19. T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, Isolation and selected properties of a 10.4 kDa Gold: Glutathione cluster compound, J. Phys. Chem. B 102, 10643–10646 (1998).

    Article  CAS  Google Scholar 

  20. R. L. Whetten, M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez, and A. Wilkinson, Crystal structures of molecular gold nanocrystal arrays, Acc. Chem. Res. 32, 397–406 (1999).

    Article  CAS  Google Scholar 

  21. J. M. Petroski, Z. L. Wang, T. C. Green, and M. A. El-Sayed, Kinetically controlled growth and shape formation mechanism of platinum nanoparticles, J. Phys. Chem. B 102, 3316–3320 (1998).

    Article  CAS  Google Scholar 

  22. Z. L. Wang, Structural analysis of self-assembling nanocrystal superlattices, Adv. Mater. 10, 13–30 (1998).

    Article  Google Scholar 

  23. P. V. Braun, P. Osenar, and S. I. Stupp, Semiconducting-superlattices templated by molecular assemblies, Nature 380, 325–328 (1996).

    Article  CAS  Google Scholar 

  24. H. Weller, Self-organized superlattices of nanoparticles, Angew. Chem. 35, 1079–1081 (1996).

    Article  CAS  Google Scholar 

  25. R. G. Nuzzo and D. L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc. 105, 4481–4483 (1983).

    Article  CAS  Google Scholar 

  26. L. Brus, Quantum crystallites and nonlinear optics, Appl. Phys. A 53, 465–474 (1991).

    Article  Google Scholar 

  27. J. H. Fendler and F. C. Meldrum, The colloid-chemical approach to nanostructured materials, Adv. Mater. 7, 607–632 (1995).

    Article  CAS  Google Scholar 

  28. A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. B 100, 13226–13239 (1996).

    Article  CAS  Google Scholar 

  29. M. P. Pileni, Nanosized particles made in colloidal assemblies, Langmuir 13, 3266–3276 (1997).

    Article  CAS  Google Scholar 

  30. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science 277, 1978–1981 (1997).

    Article  CAS  Google Scholar 

  31. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Evaporation-induced self-assembly: Nanostructures made easy, Adv. Mater. 11, 579 (1999).

    Article  CAS  Google Scholar 

  32. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Ed. Eng. 38, 56–77 (1999).

    Article  CAS  Google Scholar 

  33. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  34. W. Shenton, D. Pum, U. B. Sleytr, and S. Mann, Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers, Nature 389, 585–587 (1997).

    Article  CAS  Google Scholar 

  35. A. A. Guzelian, J. E. B. Katari, and A. V. Kadavanich, Synthesis of size-selected, surface-passivated InP nanocrystals, J. Phys. Chem. B 100, 7212–7219 (1996).

    Article  CAS  Google Scholar 

  36. H. Hu, M. Brust, and A. J. Bard, Characterization and surface charge measurement of self-assembled CdS nanoparticle films, Chem. Mater. 10, 1160–1165 (1998).

    Article  CAS  Google Scholar 

  37. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters, Science 273, 1690–1963 (1996).

    Article  CAS  Google Scholar 

  38. C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature 396, 444–446 (1998).

    Article  CAS  Google Scholar 

  39. S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten, Highly oriented molecular Ag-nanocrystal arrays, J. Phys. Chem. B 100, 13904–13910 (1996).

    Article  CAS  Google Scholar 

  40. S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten, Hexagonal close packed thin films of molecular Ag-nanocrystal arrays, Adv. Mater. 9, 817–822 (1997).

    Article  CAS  Google Scholar 

  41. P. N. Provencio, J. E. Martin, J. G. Odinek, and J. P. Wilcoxon, Studies of hexagonal Pt and Au nanocluster superlattices, Micros. Microanal. 4(Suppl. 2), 734–735 (1998).

    Google Scholar 

  42. S. Sun and C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys. 85, 4325–4330 (1999).

    Article  CAS  Google Scholar 

  43. J. S. Yin and Z. L. Wang, Preparation of self-assembled cobalt nanocrystal arrays, Nanostruct. Mater. 11, 845–852 (1999).

    Article  CAS  Google Scholar 

  44. C. Petit, A. Taleb, and M. P. Pileni, Self-organization of magnetic nanosized cobalt particles, Adv. Mater. 10, 259 (1998).

    Article  CAS  Google Scholar 

  45. S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  46. H. B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).

    Article  CAS  Google Scholar 

  47. H. B. Sun, Y. Xu, S. Matsuo, and H. Misawa, Microfabrication and characteristies of two-dimensional photonic crystal structures in vitreous silica, Opt. Rev. 6, 396–398 (1999).

    Article  CAS  Google Scholar 

  48. T. Moritz, J. Reiss, D. Diesner, D. Su, and A. Chemseddine, Nanostructured crystalline TiO2 through growth control and stabilization of intermediate structural building units, J. Phys. Chem. B 101, 8052–8053 (1997).

    Article  CAS  Google Scholar 

  49. J. S. Yin and Z. L. Wang, Ordered self-assembling of terahedral oxide nanocrystals, Phys. Rev. Lett. 79, 2570–2573 (1997).

    Article  CAS  Google Scholar 

  50. J. S. Yin and Z. L. Wang, Synthesis and structure of self-assembled cobalt oxide nanocrystal materials, J. Mater. Res. 14, 503–508 (1999).

    Article  CAS  Google Scholar 

  51. M. D. Bentzon, J. Van Wonterghem, S. Mrup, A. Thölen, and C. J. W. Koch, Ordered aggregates of ultrafine iron-oxide particles — super crystals, Phil. Mag. B 60, 169–178 (1989).

    Article  CAS  Google Scholar 

  52. L. Motte, F. Billoudet, E. Lacaze, and M.-P. Pileni, Self-organization of size-selected nanoparticles into three-dimensional superlattices, Adv. Mater. 8, 1018–1020 (1996).

    Article  CAS  Google Scholar 

  53. L. Motte, F. Billoudet, E. Lacaze, J. Douin, and M. P. Lipeni, Self-organization into 2D and 3D superlattices of nanosized particles differing by their size, J. Phys. Chem. B 101, 138–144 (1997).

    Article  CAS  Google Scholar 

  54. Z. L. Wang, Z. R. Dai, and S. Sun, Polyhedral shapes of cobalt nanocrystals and their effect on ordered nanocrystal assembly, Adv. Mater. 12, 1944–1946 (2000).

    Article  CAS  Google Scholar 

  55. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. Shafigullin, I. Vezmar, and R. L. Whetten, Chem. Phys. Lett. 91, 266 (1997).

    Google Scholar 

  56. J. S. Yin and Z. L. Wang, In situ structural evolution of self-assembled oxide nanocrystals, J. Phys. Chem. B 101, 8979–8983 (1997).

    Article  CAS  Google Scholar 

  57. M. J. Hostetler and R. W. Murray, Colloids and self-assembled monolayers, Curr. Opin. Colloid. Interface Sci. 2, 42–50 (1997).

    Article  CAS  Google Scholar 

  58. D. E. Cliffel, F. P. Zamborini, S. M. Gross, and R. W. Murray, Mercaptoammonium-monolayer-protected, water-soluble gold, silver, and palladium clusters, Langmuir 16, 9699–9702 (2000).

    Article  CAS  Google Scholar 

  59. M. Faraday, Experimental relations of gold (and other Metals) to light, Philos. Trans. R. Soc. London 147, 145–181 (1857).

    Article  Google Scholar 

  60. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Synthesis of thio-derivatized gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc. Chem. Commun. 801–802 (1994).

    Google Scholar 

  61. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, Synthesis and reactions of functionalised gold nanoparticles, J. Chem. Soc. Chem. Commun. 1655–1656 (1995).

    Google Scholar 

  62. M. P. Pileni, Nanocrystal self-assemblies: Fabrication and collective properties, J. Phys. Chem. B 105, 3358–3371 (2001).

    Article  CAS  Google Scholar 

  63. M. P. Pileni, Self-assemblies of nanocrystals: Fabrication and collective properties, Appl. Surf. Sci. 171, 1–14(2001).

    Article  CAS  Google Scholar 

  64. M. Giersig, T. Ung, L. M. Liz-Marzan, and P. Mulvaney, Direct observation of chemical reactions in silica-coated gold and silver nanoparticles, Adv. Mater. 9, 570–575 (1997).

    Article  CAS  Google Scholar 

  65. Z. L. Wang, S. A. Harfenist, I. Vezmar, R. L. Whetten, J. Bentley, N. D. Evans, and K. B. Alexander, Superlattices of self-assembled tetrahedral Ag nanocrystals, Adv. Mater. 10, 808–812(1998).

    Article  CAS  Google Scholar 

  66. W. L. Wilson, P. F. Szajowski, and L. E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science 262, 1242–1244 (1993).

    Article  CAS  Google Scholar 

  67. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L. E. Brus, Surface derivatization and isolation of semiconductor cluster molecules, J. Am. Chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  68. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature 383, 802–804(1996).

    Article  CAS  Google Scholar 

  69. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  70. M. Tomaselli, J. L. Yarger, M. Bruchez, R. H. Havlin, D. deGraw, A. Pines, and A. P. Alivisatos, NMR study of InP quantum dots: Surface structure and size effects, J. Chem. Phys. B 110, 8861–8864(1999).

    Article  CAS  Google Scholar 

  71. X. G. Peng, J. Wickham, and A. P. Alivisatos, Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distribution, J. Am. Chem. Soc. 120, 5343–5344 (1998).

    Article  CAS  Google Scholar 

  72. C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  73. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Shape controle of CdSe nanocrystals, Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  74. L. Spanhel, M. Haase, H. Weller, and A. Henglein, Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc. 109, 5649–5655(1987).

    Article  CAS  Google Scholar 

  75. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Self-organization of CdSe nanocryslallites into three-dimensional quantum dot superlattice, Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  76. Y. Nakamura and I. Tagawa, An analysis of perpendicular magnetic recording using a newly-developed 2D-FEM combined with a medium magnetization model, IEEE Trans. Magn. 25, 4159–4161 (1989).

    Article  Google Scholar 

  77. J. R. Thomas, Preparation and magnetic properties of colloidal cobalt particles, J. Appl. Phys. 37, 2914–2915 (1966).

    Article  CAS  Google Scholar 

  78. E. Papirer, P. Horney, H. Balard, R. Anthore, C. Petipas, and A. Martinet, The preparation of a ferrofluid by decomposition of dicobalt octacarbonyl, J. Colloid Interface Sci. 94, 207–228 (1983).

    Article  CAS  Google Scholar 

  79. M. Li, H. Schnablegger, and S. Mann, Coupled synthesis and self-assembly of nanoparticles o give structures with controlled organization, Nature 402, 393–395 (1999).

    Article  CAS  Google Scholar 

  80. T. Morits, J. Reiss, K. Diesner, D. Su, and A. Chemseddine, Nanostructured crystalline TiO2 through growth control and stabilization of intermediate structural building units, J. Phys. Chem. B 101, 8052–8053 (1997).

    Article  Google Scholar 

  81. E. Hao, B. Yang, S. Yu, M. Gao, and J. Shen, Formation of orderly organized cubic PbS nanoparticles domain in the presence of TiO2, Chem. Mater. 9, 1598–1600 (1997).

    Article  CAS  Google Scholar 

  82. H. Matsumoto, T. Sakata, H. Mori, and H. Yoneyama, Preparation of monodisperse CdS nanocrystals by size selective photocorrosion, J. Phys. Chem. B 100, 13781–13785 (1996).

    Article  CAS  Google Scholar 

  83. P. C. Ohara, D. V. Leff, J. R. Heath, and W. M. Gelbart, Crystallization of opals from polydisperse nanoparticles, Phys. Rev. Lett. 75, 3466–3469 (1995).

    Article  CAS  Google Scholar 

  84. Z. Zhang and M. G. Lagally, Atomistic processes in the early stages of thin-film growth, Science 276, 377–383 (1997).

    Article  CAS  Google Scholar 

  85. J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, A defect-tolerant computer architecture: Opportunities for nanotechnology, Science 280 1716–1721 (1998).

    Article  CAS  Google Scholar 

  86. C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, and J. M. Tour, Nanoscale metal selfassembled monolayer ametal heterostructures, Appl. Phys. Lett. 71, 611–613 (1997).

    Article  CAS  Google Scholar 

  87. G. Markovich, C. P. Collier, and J. R. Heath, Reversible metal-insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy, Phys. Rev. Lett. 80, 3807–3810 (1998).

    Article  CAS  Google Scholar 

  88. A. P. Alivisatos, K. P. Johnson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and P. G. Schultz, Organization of ‘nanocrystal molecules’ using DNA, Nature 382, 609–611 (1996c).

    Article  CAS  Google Scholar 

  89. S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Gold nanoelectrodes of varied size: Transition to molecule-like charging, Science 280, 209–2101 (1998).

    Google Scholar 

  90. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Gode, Nucleation and growth of porous anodic films on aluminum, Nature 272, 433–435 (1978).

    Article  CAS  Google Scholar 

  91. H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  92. M. Shiraki, Y. Wakui, T. Tokushima, and N. Tsuya, Perpendicular magnetic media by anodic oxidation method and their recording characteristics, IEEE Trans. Magn. 21, 1465–1467 (1985).

    Article  Google Scholar 

  93. S. A. Majetich and Y. Yin, Magnetization directions of individual nanoparticles, Science 284, 470–473 (1999).

    Article  CAS  Google Scholar 

  94. M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, Micropolarizer made of the anodized alumina film, Appl. Phys. Lett. 55, 607–609 (1989).

    Article  CAS  Google Scholar 

  95. J. Li, C. Papadopoulos, and J. Xu, Nanoelectronics — Growing Y-junction carbon nanotubes, Nature 402, 253–254 (1999).

    CAS  Google Scholar 

  96. D. S. Xu, D. P. Chen, Y. J. Xu, X. S. Shi, G. L. Guo, L. L. Gui, and Y. Q. Tang, Preparation of II–VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates, Pure Appl. Chem. 72, 127–135 (2000).

    Article  CAS  Google Scholar 

  97. C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, and C. B. Prater, Nanowire array composites, Science 263, 800–802 (1994).

    Article  CAS  Google Scholar 

  98. C. G. Wu, and T, Bein, Conducting carbon wires in ordered, nanometer-sized channels, Science 266, 1013–1015 (1994).

    Article  CAS  Google Scholar 

  99. T. J. Beveridge, Bacterial S-layers, Curr. Opin. Struct. Biol. 4, 204–212 (1994).

    Article  CAS  Google Scholar 

  100. K. W. Shenton, D. Pum, U. B. Sleytr, and S. Mann, Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers, Nature 389, 585–587 (1997).

    Article  CAS  Google Scholar 

  101. K. Douglas, G. Devaud, and N. A. Clark, Transfer of biologically derived nanometer-scale patterns to smooth substrates, Science 257, 642–644 (1992).

    Article  CAS  Google Scholar 

  102. T. A. Winningham, H. P. Gillis, D. A. Choutov, K. P. Martin, J. T. Moore, and K. Douglas, Formation of ordered nanocluster arrays by self-assembly on nanopatterned Si(100) surfaces, Surf. Science 406, 221–228 (1998).

    CAS  Google Scholar 

  103. T. Vossmeyer, E. DeIonno, and J. R. Heath, Light-directed assembly of nanoparticles, Angew. Chem. Int. Ed. Eng. 36, 1080–1083 (1997).

    Article  CAS  Google Scholar 

  104. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996).

    Article  CAS  Google Scholar 

  105. Z. F. Ren, Z. P. Huang, J. H. Xu, P. B. Wang, M. P. Siegal, and P. N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105–1107 (1998).

    Article  CAS  Google Scholar 

  106. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999).

    Article  CAS  Google Scholar 

  107. S. M. Huang, L. M. Dai, and A. W. H. Mau, Patterned growth and contact transfer of well-aligned carbon nanotube films, J. Phys. Chem. B 103, 4223–4227 (1999).

    Article  CAS  Google Scholar 

  108. D. Bimberg, Quantum dots: Paradigm changes in semiconductor physics, Semiconductors 33, 951–955(1999).

    Article  CAS  Google Scholar 

  109. Q. Xia, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, and P. Chen, Strain coherent InAs quiantum box islands on GaAs(100); size equalization, vertical self-organization, and optical properties, J. Vac. Sci. Technol. B 14, 2203–2207 (1996).

    Article  Google Scholar 

  110. Q. Xia, A. Madhukar, P. Chen, and N. P. Kobayashi, Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett. 75, 2542–2545 (1995).

    Article  Google Scholar 

  111. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1998).

    Google Scholar 

  112. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layered superlattices, Appl. Phys. Lett. 47, 1099–1101 (1985).

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Nanocrystal Self-Assembly. In: Self-Assembled Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-47941-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47941-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47299-2

  • Online ISBN: 978-0-306-47941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics