Skip to main content

Electrochemical Properties of Nanoparticle Assemblies

  • Chapter
  • 540 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Collier, T. Vossmeyer, and J. R. Heath, Nanocrystal superlattices, Annu. Rev. Phys. Chem. 49, 371 (1998). (b) Z. L. Wang, Transmission electron microscopy of shape-Controlled nanocrystals and their assemblies, J. Phys. Chem. B 104, 1153 (2000).

    Article  CAS  Google Scholar 

  2. G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski, Current and future applications of nanoclusters, Chem. Soc. Rev. 28, 179 (1999).

    Article  CAS  Google Scholar 

  3. C. B. Murray, C. R. Kagan and M. G. Bawendi, Self-organization of CdSe nano-crystallites into three-dimensional quantum dots superlattices, Science 270, 1335 (1995). (b) H. Weller, Self-organized superlattices of nanoparticles, Angew. Chem. Int. Ed. Engl. 35, 1079 (1996).

    Article  CAS  Google Scholar 

  4. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates, Science 267, 1629 (1995).

    CAS  Google Scholar 

  5. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reinfenberger, “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure, Science 272, 1323 (1996).

    CAS  Google Scholar 

  6. J. H. Fendler, Self-assembled nanostructured materials, Chem. Mater. 8, 1616 (1996).

    Article  CAS  Google Scholar 

  7. D. L. Feldheim and C. D. Keating, Self-assembly of single electron transistors and related devices, Chem. Rev. 27, 1 (1998).

    CAS  Google Scholar 

  8. C. J. Loweth, W. B. Caldwell, X. Peng, A. P. Alivisatos, and P. G. Schultz. DNA-based assembly of gold nanocrystals, Angew. Chem, Int. Ed. Engl. 38, 1808 (1999). (b) T. A. Taton, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, The DNA-mediated formation of super-molecular mono-and multilayered nanoparticle structures, J. Am. Chem. Soc. 122, 6305 (2000).

    Article  CAS  Google Scholar 

  9. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Synthesis of thiolderivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc., Chem. Comm., 801 (1994). (b) A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Monolayer-protected cluster molecules, Acc. Chem. Res. 33, 27 (2000). (c) R. L. Whetten, M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez, and A. Wilkinson, Crystal structures of molecular gold nanocrystal arrays, Acc. Chem. Res. 32, 397 (1999).

    Google Scholar 

  10. R. S. Ingram, M. J. Hosteller, R. W. Murray, T. G. Schaaff, J. T. Khoury, R. L. Whetten, T. P. Bigioni, D. K. Guthrie, and P. N. First, 28 kDa Alkanethiolate-protccted Au clusters give analogous solution electrochemistry and STM Coulomb staircases, J. Am. Chem. Soc. 119, 9279 (1997). (b) S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Gold nanoelectrodes of varied size: Transition to molecule-like charging, Science 280, 2098 (1998). (c) J. F. Hicks, A. C. Templeton, S. Chen, K. M. Sheran, R. Jasti, R. W. Murray, J. Debord, T. G. Schaaff, and R. L. Whetten, The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters, Anal. Chem. 71, 3703 (1999) (d) S. Chen, R. W. Murray, and S. W. Feldberg, Quantized capacitance charging of monolayer-protected Au clusters, J. Phys. Chem. B 102, 9898 (1998).

    CAS  Google Scholar 

  11. A. E. Hanna and M. Tinkam, Variation of the Coulomb staircase in a two-junction system by fractional electron charge, Phys. Rev. B 44, 5919 (1991). (b) M. Amman, R. Wilkins, E. Ben-Jacob, P. D. Maker, and R. C. Jaklevic, Analytic solution for the current-voltage characteristic of two mesoscopic tunnel junctions coupled in series, Phys. Rev. B 43, 1146(1991).

    Article  Google Scholar 

  12. T. Sato, and H. Ahmed, Observation of a Coulomb staircase in electron transport through a molecularly linked chain of gold colloidal particles, Appl. Phys. Lett. 70, 2759 (1997). (b) T. Sato, H. Ahmed, D. Brown, and B. F. G. Johnson, Single electron transistor using a molecularly linked gold colloidal particle chain, J. Appl. Phys. 82, 696 (1997). (c) L. Guo, E. Leobandung and S. Y. Chou, A Silicon single-electron transistor memory operating at room temperature, Science 275, 649 (1997). (d) W. Lu, A. J. Rimberg, K. D. Maranowski, and A. C. Gossard, Single-electron transistor strongly coupled to an electrostatically defined quantum dot, Appl. Phys. Lett. 77, 2746 (2000).

    CAS  Google Scholar 

  13. M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size, Langmuir 14, 17 (1998).

    Article  CAS  Google Scholar 

  14. S. Chen and R. W. Murray, Arenethiolate monolayer-protected gold clusters, Langmuir 15, 682 (1999).

    CAS  Google Scholar 

  15. S. Chen, A. C. Templeton, and R. W. Murray, Monolayer-protected cluster growth dynamics, Langmuir 16, 3543 (2000).

    CAS  Google Scholar 

  16. S. L. Horswell, C. J. Kiely, I. A. O’Neil, and D. J. Schiffrin, Alkyl isocyanide-derivatized platinum nanoparticles, J. Am. Chem. Soc. 121, 5573 (1999).

    Article  CAS  Google Scholar 

  17. S. Chen, K. Huang, and J. A. Stearns, Alkanethiolate-protected palladium nanoparticles, Chem. Mater. 12, 540 (2000).

    CAS  Google Scholar 

  18. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science 277, 1978 (1997).

    Article  CAS  Google Scholar 

  19. S. Chen, and J. M. Sommers, Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry and solid-state morphological evolution, J. Phys. Chem. B 105, 8816 (2001).

    CAS  Google Scholar 

  20. M. J. Hosteller, C.-J. Zhong, B. K. H. Yen, J. Anderegg, S. M. Gross, N. D. Evans, M. D. Porter, and R. W. Murray, Stable, monolayer-protected metal alloy J. clusters, J. Am. Chem. Soc. 120, 9396 (1998).

    Google Scholar 

  21. T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound, J. Phys. Chem. B 102, 10643 (1998).

    Article  CAS  Google Scholar 

  22. T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, I. Vezmar, R. L. Whetten, W. G. Cullen, and P. N. First, Isolation of smaller nanocrystal Au molecules: Robust quantum effects in optical spectra, J. Phys. Chem. B 101, 7885 (1997).

    Article  CAS  Google Scholar 

  23. N. Z. Clarke, C. Waters, K. A. Johnson, J. Satherley, and D. J. Schiffrin, Size-dependent solubility of thiol-derivatized gold nanoparticles in supercritical ethane, Langmuir 17, 6048 (2001).

    Article  CAS  Google Scholar 

  24. S. Chen, L. A. Truax, and J. M. Sommers, Alkanethiolate-protected PbS nanoparticles: Synthesis, spectroscopic and electrochemical studies, Chem. Mater. 12, 3864 (2000).

    CAS  Google Scholar 

  25. S. K. Haram, B. M. Quinn, and A. J. Bard, Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps, J. Am. Chem. Soc. 123, 8860 (2001).

    Article  CAS  Google Scholar 

  26. D. I. Gittins, D. Bethell, R. J. Nichols, and D. J. Schiffrin, Diode-like electron transfer across nanostructured films containing a redox ligand, J. Mater. Chem. 10, 79 (2000).

    Article  CAS  Google Scholar 

  27. S. Chen, and R. W. Murray, Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles, J. Phys. Chem. B 103, 9996 (1999).

    CAS  Google Scholar 

  28. S. Chen, Self-assembling of monolayer-protected gold nanoparticles, J. Phys. Chem. B 104, 663 (2000).

    CAS  Google Scholar 

  29. S. Chen, Nanoparticle assemblies: “Rectified” quantized charging in aqueous media, J. Am. Chem. Soc. 122, 7420 (2000).

    CAS  Google Scholar 

  30. S. Chen, and R. Pei, Ion-induced rectification of nanoparticle quantized capacitance charging in aqueous solutions, J. Am. Chem. Soc. 123, 10607 (2001).

    CAS  Google Scholar 

  31. S. Chen, and K. Huang, Electrochemical studies of water-soluble palladium nanoparticles, J. Cluster Sci. 11, 405 (2001).

    Google Scholar 

  32. F. P. Zamborini, J. F. Hicks, and R. W. Murray, Quantized double layer charging of nanoparticle films assembled using carboxylate/(Cu2+ or Zn2+)/carboxylate bridges, J. Am. Chem. Soc. 122, 4515 (2000).

    Article  CAS  Google Scholar 

  33. S. Chen, R. Pei, T. Zhao, D. J. Dyer, Gold nanoparticle assemblies by metal ion-pyridine complexation and their rectified quantized charging in aqueous solutions, J. Phys. Chem. B 106, 1903 (2002).

    CAS  Google Scholar 

  34. J. J. Pietron, J. F. Hicks, and R. W. Murray, Using electrons stored on quantized capacitors in electron transfer reactions, J. Am. Chem. Soc. 121, 5565 (1999).

    Article  CAS  Google Scholar 

  35. A. J. Bard and L. R. Faulkner, Electrochemical Methods, 2nd edition, (John Wiley & Sons, New York, 2001).

    Google Scholar 

  36. H. D. B. Jenkins, and K. P. Thakur, Reappraisal of thermochemical radii for complex ions, J. Chem. Educ. 56, 576 (1979).

    Article  CAS  Google Scholar 

  37. N. Matsushita, H. Kitagawa, and T. Mitani, Counter-ion radius dependence of the mixed-valence state in MX chain platinum complexes, Synth. Met. 71, 1933 (1995).

    Article  CAS  Google Scholar 

  38. TMA+ is more hydrophobic than TEA+ despite its smaller ionic size, reflected in a lower solubility of its salts in water.

    Google Scholar 

  39. R. E. Holmlin, R. Haag, M. L. Chabinyc, R. F. Ismagilov, A. E. Cohen, A. Terfort, M. A. Rampi, and G. M. Whitesides, Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers, J. Am. Chem. Soc. 123, 5075 (2001).

    Article  CAS  Google Scholar 

  40. K. Slowinski, R. V. Chamberlain, C. J. Miller, and M. Majda, Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes, J. Am. Chem. Soc. 119, 11910 (1997).

    Article  CAS  Google Scholar 

  41. J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey, M. R. Linford, M. D. Newton, and Y. Liu, The kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold, J. Phys. Chem. 99, 13141 (1995).

    Article  CAS  Google Scholar 

  42. K. Weber, L. Hockett, and S. E. Creager, Long-range electronic coupling between ferrocene and gold in alkanethiolate-based monolayers on electrodes, J. Phys. Chem. B 101, 8286 (1997).

    CAS  Google Scholar 

  43. S. E. Creager, and T. T. Wooster, A new way of using ac voltammetry to study redox kinetics in electroactive monolayers, J. Anal. Chem. 70, 4257 (1998).

    CAS  Google Scholar 

  44. W. P. Wuelfing, S. J. Green, J. J. Pietron, D. E. Cliffel, and R. W. Murray, Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters, J. Am. Chem. Soc. 122, 11465 (2000).

    Article  CAS  Google Scholar 

  45. J. F. Hicks, F. P. Zamborini, A. J. Osisek, and R. W. Murray, The dynamics of electron self-exchange between nanoparticles, J. Am. Chem. Soc. 123, 7048 (2001).

    CAS  Google Scholar 

  46. D. C. S. Tse, R. L. McCreery, and R. N. Adams, Potential oxidative pathways of brain catecholamines, J. Med. Chem. 19, 37 (1976).

    Article  CAS  Google Scholar 

  47. R. H. Terrill, T. A. Postlethwaite, C. Chen, C. Poon, A. Terzis, A. Chen, J. E. Hutchison, M. R. Clark, G. Wignall, J. D. Londono, R. Superfine, M. Falvo, C. S. Johnson, Jr., E. T. Samulski, and R. W. Murray, Monolayers in three dimensions: NMR, SAXS, thermal and electron hopping studies of alkanethiol stabilized gold clusters, J. Am. Chem. Soc. 117, 12537 (1995).

    Article  CAS  Google Scholar 

  48. A. W. Snow, and H. Wohltjen, Size-induced metal to semiconductor transition in a stabilized gold cluster ensemble, Chem. Mater. 10, 947 (1998).

    Article  CAS  Google Scholar 

  49. W.-Y. Lee, N. J. Hosteller, R. W. Murray, M. Majda, Electron hopping and electronic conductivity in monolayers of alkanethiol-stabilized gold nano-clusters at the air/water interface, Isr. J. Chem. 37, 213 (1997).

    CAS  Google Scholar 

  50. J. R. Heath, C. M. Knobler, and D. V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: The influence of particle size, size distribution and surface passivant, J. Phys. Chem. B 101, 189 (1997).

    Article  CAS  Google Scholar 

  51. M. J. Hostetler, A. C. Templeton, and R. W. Murray, Dynamics of place-exchange reactions on monolayer-protectcd gold cluster molecules, Langmuir 15, 3782 (1999).

    Article  CAS  Google Scholar 

  52. S. J. Green, J. J. Stokes, M. J. Hostetler, J. J. Pietron, and R. W. Murray, Three-dimensional monolayers: Nanometer-sized electrodes of alkanethiolate-stabilized gold cluster molecules, J. Phys. Chem. B 101, 2663 (1997).

    CAS  Google Scholar 

  53. S. J. Green, J. J. Pietron, J. J. Stokes, M. J. Hostetler, H. Vu, W. P. Wuelfing, and R. W. Murray, Three-dimensional monolayers: Voltammetry of alkanethiolate-stabilized gold cluster molecules, Langmuir 14, 5612 (1998).

    Article  CAS  Google Scholar 

  54. R. S. Ingram, and R. W. Murray, Electroactive three-dimensional monolayers: Anthraquinone-functionalized alkanethiolate-stabilized gold clusters, Langmuir 14, 4115 (1998).

    Article  CAS  Google Scholar 

  55. D. T. Miles and R. W. Murray, Redox and double-layer charging of phenothiazine functionalized monolayer-protected clusters, Anal. Chem. 73, 921 (2001).

    Article  CAS  Google Scholar 

  56. A. C. Templeton, M. J. Hostetler, E. K. Warmoth, S. Chen, C. M. Hartshorn, V. M. Krishnamurthy, M. D. E. Forbes, and R. W. Murray, Gateway reactions to diverse, polyfunctional monolayer-protected gold clusters, J. Am. Chem. Soc. 120, 4845 (1998).

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Electrochemical Properties of Nanoparticle Assemblies. In: Self-Assembled Nanostructures. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-47941-9_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47941-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47299-2

  • Online ISBN: 978-0-306-47941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics