Skip to main content

Transition-Metal-Substituted Heteropoly Anions in Nonpolar Solvents — Structures and Interaction with Carbon Dioxide

  • Chapter
Polyoxometalate Chemistry for Nano-Composite Design

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szczepankiewicz, S.; Ippolito, C.; Santora, B.; Ippolito, G.; Van de Ven, T.; Fronckowiak, L.; Wiatrowski, F.; Power, T.; Kozik, M. Interaction of Carbon Dioxide with Transition-Metal-Substituted Heteropolyanions in Nonpolar Solvents. Spectroscopic Evidence for Complex Formation, Inorg. Chem. 1998, 37, 4344.

    Article  CAS  Google Scholar 

  2. For reviews of chemistry of heteropoly complexes see: (a) Baker, L.C.W.; Glick, D.C. Present General Status of Understanding of Heteropoly Electrolytes and a Tracing of Some Major Highlights in the History of Their Elucidation Chem. Rev. 1998, 98, 3. (b) Pope, M. T.; Muller, A. Polyoxometalate Chemistry — An Old Field with New Dimensions in Several Disciplines, Angew. Chem. Int. Ed. Engl. 1991, 30, 34. (c) Day, V. W.; Klemperer, W. G., Metal Oxide Chemistry in Solution: The Early Transition Metal Polyoxoanions, Science 1985, 228, 533. (d) Pope, M. T. Heteropoly and Isopofy Oxometalates, Springer, New York, 1983.

    Article  CAS  Google Scholar 

  3. Katsoulis, D. E.; Pope, M. T., New Chemistry for Heteropoly anions in Anhydrous Nonpolar Solvents. Coordinative Unsaturation of Surface Atoms. Polyanion Oxygen Carriers, J. Am. Chem. Soc., 1984, 106, 2737. (b) Katsoulis, D. E. Doctoral Dissertation, Georgetown University, 1985. (c) Katsoulis, D. E.; Taush, V. S.; Pope, M. T., Interaction of Sulfur Dioxide with Heteropolyanions in Nonpolar Solvents. Evidence for Complex Formation, Inorg. Chem. 1987, 26, 215. (d) Katsoulis, D. E.; Pope, M. T. Reactions of Heteropolyanions in Non-Polar Solvents. 3. Activation of Dioxygen by Manganese(II) Centers in Polytungstates — Oxidation of Hindered Phenols, J. Chem. Soc. Dalton Trans. 1989, 1483.

    Article  CAS  Google Scholar 

  4. Toth, J. E.; Anson F. C. Electrocatalytic Reduction of Nitrite and Nitric-Oxide to Ammonia with Iron-Substituted Polyoxotungstates, J. Am. Chem. Soc. 1989, 111, 2444.

    Article  CAS  Google Scholar 

  5. Gibson, D. H. The Organometallic Chemistry of Carbon-Dioxide, Chem. Rev. 1996, 96, 2063. (b) Leitner, W. Carbon-Dioxide as a Raw-Material — The Synthesis of Formic-Acid and Its Derivatives from CO 2, Angew. Chem. Int. Ed. Engl. 1995, 34, 2207. (c) Tanaka, K. Carbon dioxide fixation catalyzed by metal complexes Adv. Inorg. Chem. 1995, 43, 409. (d) Ayers, W. M. Ed. Catalytic Activation of Carbon Dioxide, ACS Symposium Series 363, Washington, DC; 1988. (e) Kolomnikow, I. S.; Lysyak, T.V. Carbon-Dioxide in Coordination Chemistry and Catalysis, Russ. Chem. Rev. 1990, 59, 589. (f) Behr, A. Carbon Dioxide Activation by Metal Complexes, VCH, Weinheim, 1988. (g) Darensbourg, D. J.; Kudaroski, R. A. The activation of carbon dioxide by metal complexes, Adv. Organomet. Chem. 1983, 22, 129. (h) Eisenberg, R.; Hendricksen, D. E. The binding and activation of carbon monooxide, carbon dioxide, and nitric oxide and their homogeneously catalyzed reactions, Adv. Catal. 1979, 28, 79. (i) Souter, P. F.; Andrews, L. P. F. A Spectroscopic and Theoretical-Study of the Reactions of Group-6 Metal Atoms with Carbon-Dioxide, J. Am. Chem. Soc. 1997, 119, 7350.

    Article  CAS  Google Scholar 

  6. Sullivan, B. P. Ed. Electrochemical and Electrocatalytic Reactions of CO 2, Elsevier, 1993. (b) Collin, J. P.; Sauvage, J. P. Electrochemical Reduction of Carbon-Dioxide Mediated by Molecular Catalysts Coord. Chem. Rev. 1989, 93, 245. (c) Sullivan, B. P. Reduction of carbon dioxide with platinum metals electrocatalysts. A potentially important route for the future production of fuels and chemicals Platinum Metals Rev. 1989, 33, 2. (d) Cheng, S. C.; Blaine, C. A.; Hill, M. G.; Mann, K. R. Electrochemical and IR Spectroelectrochemical Studies of the Electrocatalytic Reduction of Carbon Dioxide by [Ir 2 (dimen) 4 ]2+ (dimen = 1,8-Diisocyanomenthane), Inorg. Chem. 1996, 35, 7704. (e) Bhugun, I.; Lexa, D.; Saveant, J. M. Catalysis of the Electrochemical Reduction of Carbon-Dioxide by Iron(O) Porphyrins — Synergystic Effect of Weak Bronsted Acids J. Am. Chem. Soc. 1996, 118, 1769. (f) Haines, R. J.; Wittrig, R. E.; Kubiak, C. P. Electrocatalytic Reduction of Carbon-Dioxide by the Binuclear Copper Complex (Cu-2(6-(Diphenylphosphino)-2,2′-Bipyridyl) 2 (MeCN) 2)(PF 6)2 Inorg. Chem. 1994, 21, 4723. (g) Zhang, J. J.; Pietro, W. J.; Lever, A. B. P. Rotating-Ring-Disk Electrode Analysis of CO2 Reduction Electrocatalyzed by a Cobalt Tetramethylpyridoporphyrazine on the Disk and Detected as Co on a Platinum Ring J. Electroanal. Chem. 1996, 403, 93. (h) Lee, Y. F.; Kirchhoff, J. R.; Berger, R. M.; Gosztola, D. Spectroelectrochemistry and Excited-State Absorption-Spectroscopy of Rhenium(I) Alpha, Alpha’-Diimine Complexes J. Chem. Soc. Dalton Trans. 1995, 22, 3677. (i) Toyohara, K.; Nagao, H.; Mizukawa, T.; Tanaka, K. Ruthenium Formyl Complexes as the Branch Point in 2-Electron and Multielectron Reductions of CO 2 Inorg. Chem. 1995, 34,5399. (j) Steffey, B. D.; Curtis, C. J.; Dubois, D. L. Electrochemical Reduction of CO2 Catalyzed by a Dinuclear Palladium Cooperativity Organometallics 1995, 14, 4937. (k) Ogata, T.; Yanagida, S.; Brunschwig, B. S.; Fujita, E. Mechanistic and Kinetic-Studies of Cobalt Macrocycles in a Photochemical CO 2 Reduction System — Evidence of CO-CO 2 Adducts as Intermediates J. Am. Chem. Soc. 1995, 117, 6708. (1) Arana, C.; Keshavarz, M.; Potts, K. T.; Abruna, H. D. Electrocatalytic Reduction of CO 2 and O-2 with Electropolymerized Films of Vinyl-Terpyridine Complexes of Fe, Ni and Co Inorg. Chim. Acta 1994, 225, 285.

    Google Scholar 

  7. Sullivan, B. P.; Bruce, M. R. M.; O’Toole, T. R.; Bolinger, C. M.; Megehee, E.; Thorp, H.; Meyer, T. J. in Reference 5d, Chapter 6, p.52.

    Google Scholar 

  8. Malik, S. A.; Weakley, T. J. R., Heteropolyanions Related to P 2 W 18 O 62 6− containing Heteroatoms of Two Elements, J. Chem. Soc. Chem. Commun. 1967, 1094. (b) Weakley, T. J. R.; Malik, S. A., Heteropolyanions Containing Two Different Heteroatoms. I., J. Inorg. Nucl. Chem. 1967, 29, 2935. (c) Malik, S. A.; Weakley, T. J. R., Heteropolyanions Containing Two Different Heteroatoms. Part II. Anions Related to 18-Tungstodiphosphate, J. Chem. Soc. A 1968, 2647. (d) Tourne, C.; Tourne, G.; Malik, S. A.; Weakley, T. J. R., Triheteropolyanions Containing Copper(II), Manganese(II), or Manganese(III), J. Inorg. Nucl. Chem. 1970, 32, 3875. (e) Weakely, T. J. R., Heteropolyanions Containing Two Different Heteroatoms. Part III. Cobalto(II)undecatungstophosphate and Related Anions, J. Chem. Soc. Dalton 1973, 341. (f) Zonnevijlle, F.; Tourne, C. M.; Tourne, G. F., Preparation and Characterization of Iron(III)-and Rhodium(III)-Containing Heteropolytungstates. Identification of Novel Oxo-Bridged Iron(III) Dimers, Inorg.Chem. 1982, 21, 2751. (g) Ortega, F.; Pope, M. T., Polyoxotungstate Anions Containing High-Valent Rhenium. 1. Keggin Anion Derivatives, Inorg.Chem. 1984, 23, 3292.

    Google Scholar 

  9. Contant, R.; Ciabrini, J-P., Preparations and Solution Properties of Some ‘Defect’ Heteropolyanions Related to 18-tungsto-2-phosphates (α-and β-Isomers), J. Chem. Res. Synop. 1977, 222; J. Chem. Res. Miniprint 1977, 2601. (b) Lyon, D. K.; Miller, W. K.; Novet, T.; Domaille, P. J.; Evitt, E.; Johnson, D. C.; Finke, R. G. Highly Oxidation Resistant Inorganic-Porphyrin Analog Polyoxometalate Oxidation Catalysts. 1. The Synthesis and Characterization of Aqueous-Soluble Potassium-Salts of α-2-P 2 W 17 O 61(M η+.OH 2)η−10 and Organic — Solvent Soluble Tetra-Normal-Butylammonium Salts of α-2-P 2 W 17 O 61(M η+.Br)η−11 (M=Mn 3+, Fe 3+, Co 2+, Ni 2+, Cu 2+) J. Am. Chem. Soc. 1991, 113, 7209.

    Google Scholar 

  10. Weakley, T. J. R.; Evans, H. T. Jr.; Showell, J. S.; Tourne, G. F.; Tourne, C. M., 18-Tungstotetracobalto(II)diphosphate and Related Anions: a Novel Structural Class of Heteropolyanions, J.C.S. Chem. Commun. 1973, 139. (b) Evans H. T.; Tourne, C. M.; Tourne, G. F. Weakley, T. J. R., X-Ray Crystallographic and Tungsten-183 Nuclear Magnetic Resonance Structural Studies of the [M 4(H 2 O)2(XW 9 O 34)2]10− Heteropolyanions (M=Co II or Zn, X=P or As) J. Chem. Soc. Dalton Trans. 1986, 2699.

    Google Scholar 

  11. Kozik, M.; Casan-Pastor, N.; Hammer, C.F.; Baker, L.C.W., Ring Currents in Wholly Inorganic Heteropoly Blue Complexes. Evaluation by a Modification of Evans’s Susceptibility Method, J. Am. Chem. Soc. 1988, 110, 7697.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Paul, J. et al. (2002). Transition-Metal-Substituted Heteropoly Anions in Nonpolar Solvents — Structures and Interaction with Carbon Dioxide. In: Yamase, T., Pope, M.T. (eds) Polyoxometalate Chemistry for Nano-Composite Design. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-47933-8_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-47933-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47359-3

  • Online ISBN: 978-0-306-47933-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics