Skip to main content

Polymer Conjugates for Imaging

  • Chapter
  • 588 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 519))

Conclusion

The capabilities of modern medical imaging techniques can be greatly enhanced by the use of injectable imaging pharmaceuticals. These take a number of forms, from passive vascular contrast agents to highly specific agents targeted to specific receptors. One problem encountered with formulations based on biological materials has created a need for alternative sources of material for incorporation into imaging formulations. Synthetic polymers are expected to meet that need and are now established as a new generation of image contrast agents with the potential for clinical application in all medical imaging modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maeda, H., 1994, Polymer conjugated macromolecular drugs for tumor-specific targeting. In Polymeric Site-Specific Pharmacotherapy (A.J. Domb, ed), J Wiley & Sons New York pp.96–116.

    Google Scholar 

  2. Perkins, A. C., 1998, Polymer Diagnostics: The next generation of image contrast agents. J. Drug. Targeting 6:79–84.

    CAS  Google Scholar 

  3. Duncan, R., Dimitrijevic, S., Evagorou, E. G., 1996, The role of polymer conjugates in the diagnosis and treatment of cancer. STP Pharma Sciences 6:237–263.

    Google Scholar 

  4. Maeda, H., 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromoleucluar drug targeting. Advanced Enzyme Regul. 41:189–207.

    CAS  Google Scholar 

  5. Bogdanov, A. A., Weissleder, R., Brady, T.J. (1995) Long circulating blood pool imaging agents. Advanced Drug Delivery Rev. 16, 335–348.

    CAS  Google Scholar 

  6. Torchilin, V. P., 2000. Polymeric contrast agents for medical imaging. Current Pharmaceutical biotechnology 1:183–215.

    Article  PubMed  CAS  Google Scholar 

  7. Perkins, A.C., and Frier, M., eds. 1999, Nuclear Medicine in Pharmaceutical Research. Taylor and Francis, London.

    Google Scholar 

  8. Pimm, M. V, Clegg, J. A., Hudecz F, Baldwin RW, 1991, 111In labelling of a branched polypeptide drug carrier with a poly(L-lysine) backbone. Int. J. Pharmaceutics 79:77–80.

    Google Scholar 

  9. Pimm, M. V., Perkins, A. C., Hudecz, F., 1992, Scinitigraphic evaluation of the pharmacokinetics of a soluble polymeric drug carrier. Eur. J. Nucl, Med. 19:449–452.

    CAS  Google Scholar 

  10. Pimm, M. V., Perkins, A. C., Gribben, S. J., Hudecz, F., 1994, J. Scintigraphic determination of the biodistribution of an 111In labelled poly(L-lysine) backbone branched polypeptide drug carrier in tumour-bearing mice. Nucl. Biol. Med. 38 (Suppl):104–108.

    CAS  Google Scholar 

  11. Pimm, M., V., Perkins, A.,C., Duncan, R., Ulbrich, K., 1993, Targeting of N-(2-Hydroxypropyl) methacrylamide copolymer-doxorubicin conjugate to the hepatocyte galactose-receptor in mice: visualisation and quantification by gamma scinitgraphy as a basis for clinical targeting studies. J. Drug. Targeting 1:125–131.

    CAS  Google Scholar 

  12. Perkins, A. C., Frier, M., Pimm, M. V., Hudecz, F., 1998, 99mTc-branched-chain-polypeptide (BCP): A potential synthetic radiopharmaceutical. J. Labelled Comp. Radiopharm XLI:631–638.

    Google Scholar 

  13. Pimm, M. V., 1999, Scintigraphic study of drug carriers and conjugates. In Nuclear Medicine in Pharmaceutical Research. A. C. Perkins and M. Frier, eds. Taylor and Francis London, pp133–169.

    Google Scholar 

  14. Pimm, M. V., Perkins, A. C., Strohalm, J., Ulbrich, K., Duncan, R., 1996, Gamma Scintigraphy of a 123I-Labelled N-(2-Hydroxypropyl) Methacrylamide Copolymer-Doxorubicin Conjugate Containing Galactosamine Following Intravenous Administration to Nude Mice Bearing Hepatic Human Colon Carcinoma. J. Drug. Targeting 3:385–390.

    CAS  Google Scholar 

  15. Pimm, M. V., Perkins, A. C., Strohalm, J., Ulbrich, K., Duncan, R., 1996, Gamma Scintigraphy of the Biodistribution of 123I-Labelled N-(2-Hydroxypropyl) Methacryllamide Copolymer-Doxorubicin Conjugates in Mice with Transplanted Melanoma and Mammary Carcinoma J. Drug Targeting 3:375–383.

    CAS  Google Scholar 

  16. Julyan P, J., Seymore, L. W., Ferry, D. R., Daryani, S., Boivin, C. M., Doran, J., David, M., Anderson, D., Christodoulou, C., Young, A. M., Hesselwood, S., Kerr, D. J., 1999, Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J. Controlled Release 57: 281–290.

    Article  CAS  Google Scholar 

  17. Pimm, M. V., Perkins, A.C., Gribben, S. J., Mezo, G., Gaal D and Hudecz, F. 1995 Gamma scintigraphy of 111In-labelled branched chain polypeptides (BCP) with a poly(L-lysine) backbone in mice with mammary carcinoma: Effect of charge on biodistribution and tumour imaging potential. Annals. Nucl. Med., 9:247–251.

    CAS  Google Scholar 

  18. Pimm, M. V., Gribben, S. J., Bogdán, K., Hudecz, F., 1995, The effect of charge on the biodistribution in mice of branched chain polypeptides with a poly(L-lysine) backbone labelled with 123I,111In and 51Cr. J. Controlled Release 37:161–172.

    Article  CAS  Google Scholar 

  19. Khaw, B-A., Kilbanov, A., O’Donnell, S. M., Saito, T., Nossiff, N., Slinkin, M. A., Newell, J. B., Strauss, W., Torchilin, V. P. 1991, Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J. Nucl. Med. 32:1742–1751.

    PubMed  CAS  Google Scholar 

  20. Perkins, A.C. and Frier, M., 1999, Bad blood and biologicals: the need for new radiopharmaceutical source materials. Nucl. Med. Commun. 20:1–3

    PubMed  CAS  Google Scholar 

  21. Verbeke, K., Ons, S., De Roo, M., Verbruggen, A. (1994) Labelling of poly-l-lysine with 99mTc and evaluation as a possible tracer agent for ventriculography. J. Nucl. Biol. Med. 38,(Suppl 1 to No 4) 75–78.

    PubMed  CAS  Google Scholar 

  22. Bogdanov, A. A., Callahan R.J., Wilkinson, R.A., Martin, C., Cameron, J.A., Fisschman, A. J., Brady, T. J., Weissledr, R., 1994 Synthetic copolymer kit for radionuclide blood-pool imaging. J. Nucl. Med., 35:1880–1886.

    PubMed  CAS  Google Scholar 

  23. Dams, E. T. M., Oyen, W. J. G., Boerman, O. C., Storm, G., Laverman P., Kok, P. J. M., Buijs, W. C. A. M., Bakker, H., van der Meer, J. W. M., Corstens, F. H. M., 2000, 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation:clinical evaluation. J. Nucl. Med. 41:622–630.

    PubMed  CAS  Google Scholar 

  24. Laverman, P., Zalipsky, S., Oyen, W. J. G., Dams, E. T. M., Storm, G., Mullah, N., Corstens F. H. M., Boerman, O. C., 2000, Improved imaging of infections by avidin-induced clearance of 99mTc-biotin-PEG liposomes. J. Nucl. Med. 41:912–918.

    PubMed  CAS  Google Scholar 

  25. Vera D R, Wallace A M, Hoh C K, Mattrey R F, 2001, A Synthetic Macromolecule for Sentinel Node Detection: 99mTc-DTPA-Mannosyl-Dextran, J. Nucl. Med. 42:951–959.

    PubMed  CAS  Google Scholar 

  26. Schwickert, H. C., Roberts, T. P. L., Mühler, A,. Stiskal, M., Demsar, F., Brasch, R. C. 1995, Angiographic properties of Gd-DTPA-24-cascade-polymer — a new macromolecular MR contrast agent. Eur. J. Radiol. 20, 144–150.

    Article  PubMed  CAS  Google Scholar 

  27. Wiener, E. C., Brechbiel, M. W., Brothers, H., Magin, R. L., Gansow, O. A., Tomalia, D. A., Lauterbur, P. C., 1994, Dendrimer-based metal chelates: a new class of magnetic resonance image contrast agents. Magn. Reson. Med. 13:1–8.

    Google Scholar 

  28. Siauve, N., Clément, O., Cuénod, C-A., Benderbous, S., Frija, G., 1996, Capillary leakage of a macromolecular MRI agent, carboxymethyldextran-Gd-DTPA, in the liver: pharmacokinetics and imaging implications. Magn. Reson. Imaging., 14, 381–390.

    PubMed  CAS  Google Scholar 

  29. Berthezéne, Y., Vexler, V., Price, D. C, Wisner-Dupon, J., Mosely, M. E., Aicher, K. P., Brasch R.C., 1992, Magnetic resonance imaging detection of an experimental pulmonary perfusion deficit using a macromolecular contrast agent. Invest. Radiol. 27, 346–351.

    PubMed  Google Scholar 

  30. Harika, L., Weissleder, R., Poss, K., Zimmer, C., Papisov, M. I., Brady, T. J., M. R., 1995, Lymphography with a lymphotropic T1-type MR contrast agent Gd-DTPA-PGM. Magn. Reson. Med., 33, 88–92.

    PubMed  CAS  Google Scholar 

  31. Schmitt-Willich, H., Ebert, W., Frenzel, T., Misselwitz, B., Platzek, J., Radüchel, B., Weinmann H-J., 1997, Synthesis and preclinical evaluation of a 24-mer dendrimer as a new contrast agent in MR imaging of the vascular system. Proceedings of the second International Symposium on Polymer Therapeutics: From laboratory to the clinic. Kumamoto, Japan (P-19), 40.

    Google Scholar 

  32. Hindle, A. J. and Perkins, A. C., 1995, History and basic principles of echo-contrast media. Brit. Med. Ultrasound Bulletin, 3(No 1): 17–23.

    Google Scholar 

  33. Schneider, M., Bussat, P., Barrau, M-B., Arditi, M., Yan, F., Hybl, E. (1992) Polymeric microballoons as ultrasound contrast agents: Physical and Ultrasonic properties compared with sonicated albumin. Invest. Radiol., 27, 134–139.

    PubMed  CAS  Google Scholar 

  34. Schneider, M., Broillet, A., Bussat, P., Ventrone, R., 1994, The use of polymeric microballoons as ultrasound contrast agents for liver imaging. Invest. Radiol., 29:S149–S151.

    PubMed  Google Scholar 

  35. Fritzsch, T., Heldman, D., and Reinhardt, M., 1997, The potential of a novel ultrasound contrast medium. In Ultrasound Contrast Agents (B. B. Goldberg, ed.), Martin Dunitz, London, pp. 169–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Perkins, A.C. (2004). Polymer Conjugates for Imaging. In: Maeda, H., Kabanov, A., Kataoka, K., Okano, T. (eds) Polymer Drugs in the Clinical Stage. Advances in Experimental Medicine and Biology, vol 519. Springer, Boston, MA. https://doi.org/10.1007/0-306-47932-X_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47932-X_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47471-2

  • Online ISBN: 978-0-306-47932-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics