Skip to main content

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC,volume 1))

Conclusion

There is conclusive evidence that atherosclerosis is a complex inflammatory process that begins early in life. Inflammatory reaction has been demonstrated in various stages of the atheromatous lesions in human and animal models. Furthermore, systemic markers of inflammation can predict future cardiovascular events in healthy populations. The process of initiation of atherosclerosis is not unlike that of the clotting cascade and similar to the inflammatory cascade in chronic infection. The differences may be only in the degree and extent of stimulation of the various reactions, and to specific types of cytokines stimulated which may dictate the type of cellular response. Whatever the nature of the initial insult that leads to endothelial injury, there follows a cascade of events-increased expression of adhesion molecules that stimulate adhesion, aggregation, and migration of leukocytes; upregulation of proinflammatory cytokines that causes further accumulation of leukocytes, foam cells, and lipids and at the same time stimulate hepatocytes to increase acute phase reactants; continued stimulation of cytokines and various tissue growth factors that influence migration and proliferation of smooth-muscle cells, fibroblasts, and leukocytes. It has been postulated that IL-6, an end product of TNF-α and IL-1; upregulation, is the central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity98,99. IL-6 is a powerful inducer of the hepatic acute phase response, such as fibrinogen, CRP, and SAA, which are strong risk factors for CHD, and is associated with increased blood viscosity, platelet number, and activity. Furthermore, raised SAA lowers HDL-cholesterol levels (which are protective against atherosclerosis). IL-6 also decreased lipoprotein lipase (LPL) activity and monomeric LPL levels in plasma, which increases macrophage uptake of lipids. In fatty streaks and the fibrous caps and shoulder regions of atheroma, macrophage foam cells and smooth-muscle cells express IL-6, along with IL-1β and TNF-α indicating that the cytokines play a role in atherogenesis. Furthermore, circulating IL-6 stimulates the hypothalmic-pituitary-adrenal axis, activation of which is associated with central obesity, hypertension, and insulin resistance99.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMillan, G. (1995) Historical review of research or atherosclerosis, Adv. Exp. Med. Biol., 369, 1–6.

    PubMed  CAS  Google Scholar 

  2. Ross, R. (1986) The pathogenesis of atherosclerosis—an update, N. Engl. J. Med., 314, 488–500.

    Article  PubMed  CAS  Google Scholar 

  3. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature, 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  4. Murray, C. J., & Lopez, A. D. (1997) Alternative projections of mortality and disability by cause, 1990–2020: global burden of disease study, Lancet, 349, 1498–1504.

    Article  PubMed  CAS  Google Scholar 

  5. Nieto, J. F. (1998) Infections and atherosclerosis. New clues from an old hypothesis? Am. J. Epidemiol., 148, 937–948.

    PubMed  CAS  Google Scholar 

  6. Von Rokitansky, C. A. (1852) Manual of pathological anatomy [Trans. G. I. Day], (Vol. 4, pp. 201–208), London: The Sydenham Society.

    Google Scholar 

  7. Virchow, R. (1856) Gesammelte Abhandlungen zur Wissen-Schaftilichen medium: phlogose ung thrombose in Yefussystem (pp. 458–463), Berlin: Meidinger Sohn and Co.

    Google Scholar 

  8. Ross, R. (1999) Mechanisms of disease: atherosclerosis—an inflammatory disease [review], N. Engl. J. Med., 340, 115–126.

    Article  PubMed  CAS  Google Scholar 

  9. Napoli, C., D’Armiento, F. P., Mancini, F. P., Postiglione, A., Witztum, J. L., Palumbo, G., & Palinski, W. (1997) Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia: intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions, J. Clin. Invest., 100, 2680–2690.

    Article  PubMed  CAS  Google Scholar 

  10. Libby, P., & Ross, R. (1996) Cytokines and growth regulatorymolecules, in V. Fuster, R. Ross, & E. J. Topol (Eds.) Atherosclerosis and coronary artery disease (Vol. I, pp. 585–594), Philadelphia: Lippincott-Raven.

    Google Scholar 

  11. Raines, E. W., Rosefeld, M. E., & Ross, R. (1996) The role of macrophages, in V. Fuster, R. Ross, & E. J. Topol (Eds.) Atherosclerosis and coronary artery disease (Vol. I, pp. 539–555), Philadelphia: Lippincott-Raven.

    Google Scholar 

  12. Falk, E., Shah, P. K., & Fuster, V. (1996) Pathogenesis of plaque disruption, in V. Fuster, R. Ross, & E.J. Topol (Eds.) Atherosclerosis and coronary artery disease, (Vol.1, pp. 492–510), Philadelphia: Lippincott-Raven.

    Google Scholar 

  13. Gotlieb, A. I., & Languille, B. L. (1996) The role of rheology in atherosclerotic coronary artery disease, in V. Fuster, R. Ross, & E. J. Topol (Eds.) Atherosclerosis and coronary artery disease (Vol.1,pp.595–606), Philadelphia: Lippincott-Raven.

    Google Scholar 

  14. Adams, D. H., & Shaw, S. (1994) Leucocyte-endothelial interactions and regulations of leucocyte migration (review), Lancet, 343, 831–836.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka, Y., Adams, D. H., Hubscher, S., Hirano, H., Sieberlist, U., & Shaw, S. (1993) T-celladhesion induced by proteoglycan-immobilized cytokine MIP-1β, Nature, 361, 79–82.

    Article  PubMed  CAS  Google Scholar 

  16. Taub, D. D., Conlon, K., Lloyd, A. R., Oppenheim, J. J., & Kelvin, D. J. (1993) Preferential migration of activated human CD4+and CD8+T-cells in response to MIP-1α and MIP-1β, Science, 260, 355–358.

    Article  PubMed  CAS  Google Scholar 

  17. Schall, T. J. (1991) Biology of the RANTES/SIScytokine family, Cytokine, 3, 165–183.

    Article  PubMed  CAS  Google Scholar 

  18. Muller, W. A., Weigl, S. A., Deng, X., & Phillips, D.M. (1993) PECAM-I is required for transendothelial migration of leucocytes, J. Exp. Med., 179, 449–460.

    Article  Google Scholar 

  19. Giachelli, C. M., Lombardi, D., Johnson, R. J., Murry, C. E., & Almeida, M. (1998) Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo, Am. J. Pathol., 152, 353–358.

    PubMed  CAS  Google Scholar 

  20. Nagel, T., Resnick, N., Arkinson, W. J., Dewey, C. F. Jr., & Gimbrone, M. A. Jr. (1994) Shearstress selectively upregulates intercellular adhesion molecule-1expression in cultured human vascular endothelial cells, J. Clin. Invest., 94, 885–891.

    Article  PubMed  CAS  Google Scholar 

  21. Mondy, J. S., Lindner, V, Miyashimo, J. K., Berk, B. C., Dean, R. H., & Geary, R. L. (1997) Platelet-derived growth factor ligand and receptor expression in response to altered blood flow in vivo, Circ. Res., 81, 320–327.

    PubMed  CAS  Google Scholar 

  22. Rosenfeld, M., & Ross, R. (1990) Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fed rabbits, Arteriosclerosis, 10, 680–687.

    PubMed  CAS  Google Scholar 

  23. Hannson, G. K., & Libby, P. (1996) The roleof the lymphocytes, in V. Fuster, R. Ross, & E. J. Topol (eds.) Atherosclerosis and coronary artery disease (Vol. 1, pp.557–568), Philadelphia: Lippincott-Raven.

    Google Scholar 

  24. Hannson, G. K., Jonasson, L., Siefert, P. S., & Stemme, S. (1989) Immune mechanisms inatherosclerosis, Arteriosclerosis, 9, 567–578.

    Google Scholar 

  25. Stemme, S., Faber, B., Holm, J., Wiklund, O., Witztum, J. L., & Hannson, G. K. (1995) T-lymphocytes from human atherosclerotic plaques recognized oxidized low density lipoprotein, Proc. Natl. Acad. Sci. USA, 92, 3893–3897.

    Article  PubMed  CAS  Google Scholar 

  26. Wick, G., Romen, M., Amberger, A., Metzler, B., Mayer, M., Falkensammer, G., & Xu, Q. (1997) Atherosclerosis, autoimmunity andvascular associated lymphoid tissue, FASEB J. 11, 1199–1207.

    PubMed  CAS  Google Scholar 

  27. Bombeli, T, Schwartz, B. R., & Harlan, J. M. (1998) Adhesion of activated platelets to endothelial cells: evidence for a GP IIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule I (ICAM-I), αvβ3 integrin, and GPIbβ, J. Exp. Med., 187, 329–339.

    Article  PubMed  CAS  Google Scholar 

  28. Badimon, J. J., Meyer, B., Feigen, L. P., Baron, D. A., Chesebro, J. H., Fuster, V., & Badimon, L. (1997) Thrombosis triggered by severe arterial lesions is inhibited by oral administration of a glycoprotein IIb/IIIa antagonist, Eur. J. Clin. Invest., 27, 568–574.

    Article  PubMed  CAS  Google Scholar 

  29. Sjölund, M., Hedin, U., Sejersen, T., Heldin, C. H., & Thyberg, J. J. (1988) Arterial smooth muscle cell expresses platelet derived growth factor (PDGF), A chain mRNA, secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotypeand growth state dependent manner, J. Cell Biol., 106, 403–113.

    Article  PubMed  Google Scholar 

  30. Baird, A., & Böhlen, P. (1990) Fibroblast growth factors, in M. B. Sporn & A. B. Roberts (Eds.), Peptide growth factors and their receptors (pp. 369–418), Berlin: Springer.

    Google Scholar 

  31. Smith, R. E., Hogaboam, C. M., Stricter, R. M., Lukacs, N. W., & Kinkrel, S. L. (1997) Cell-to-cell and cell-to-matrix interactions mediatechemokine expression: an important component of the inflammatory lesion, J. Leukoc. Biol., 62, 612–619.

    PubMed  CAS  Google Scholar 

  32. Stary, H. C. (1996) The histological classification of atherosclerotic lesions in human coronary arteries, in V Fuster, R. Ross, & E. J. Topol (Eds.), Atherosclerosis and coronary artery disease (Vol. I, pp. 463–474), Philadelphia: Lippincott-Raven.

    Google Scholar 

  33. Schwenke, D. C., & Carew, T. E. (1989) The initiation of atherosclerotic lesions in cholesterol-fed rabbits I. Focal increase in arterial LDL concentrations precede development of fattystreak lesions, Arteriosclerosis, 9, 895–907.

    PubMed  CAS  Google Scholar 

  34. Yin, J., & Stary, H. C. (1994) Differences in thrombosis and composition of advanced atherosclerotic lesions between natives and non-natives of Alaska, FASEB J., 8, A268.

    Google Scholar 

  35. Rader, D. J. (2000) Inflammatory markers of coronary risk (Editorial), N. Engl. J. Med., 343, 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  36. Ernst, E., & Resch, K. L. (1993) Fibrinogen as a cardiovascular risk factor, Ann. Intern. Med., 118, 956–963.

    PubMed  CAS  Google Scholar 

  37. Danesh, J., Colins, R., Appleby, P., & Peto, R. (1998) Association of fibrinogen, C-reactive protein, albumin or leucocyte count with coronary heart disease: meta analysis of prospective studies, JAMA, 279, 1477–1482.

    Article  PubMed  CAS  Google Scholar 

  38. Thompson, W. D., Stirk, C. M., & Smith, E. B. (1992) Fibrin degradation products as the pathological growth stimulus to atherosclerotic plaque formation, in E. Ernest, W. Koenig, G. D. O. Lowe, & T. W. Meade (Eds.), Fibrinogen: a “new” cardiovascular risk factor (pp. 35–40), Vienna: Blackwell-MZW.

    Google Scholar 

  39. Simzinger, H., & Pirich C. (1992) Platelet function and fibrinogen, in E. Ernst, W. Koenig, G. D. O. Lowe, & T. W. Meade (Eds.), Fibrinogen: a “new ” cardiovascular risk factor (pp. 46–50), Vienna: Blackwell-MZW.

    Google Scholar 

  40. Chambers, R. E., Hutton, C. W., Dieppe, P. A., & Whicher, J. T. (1991) Comparative study of C-reactive protein and serum amyloid A protein in experimental inflammation, Ann. Rhem. Dis., 150, 677–679.

    Article  Google Scholar 

  41. Luizzo, G., Biasucci, L. M., Gallimore, J. R., Grillo, R. L., Rebuzzi, A. G., Pepys, M. B., & Maseri, A. (1994) The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina, N. Engl. J. Med., 331, 417–424.

    Article  Google Scholar 

  42. Oltrona, L., Merlini, P. A., & Pezzano, A.(1995) C-reactive protein and serum amyloid A protein in unstable angina, N. Engl. J. Med., 332, 399.

    PubMed  CAS  Google Scholar 

  43. Pietila, K. O., Harmoinen, A. P., Jokincity, J., & Pasternack, A. I. (1996) Serum C-reactive protein concentration in acute myocardial infarction and its relationship to mortality during 24 months of follow up in patients with thrombolytic therapy, Eur. Heart J., 17, 1345–1349.

    PubMed  CAS  Google Scholar 

  44. Mach, F., Lovis, C., Gaspoz, J. M., Unger, P. F., Bouillie, M., Urban, P., & Rutishauser, W. (1997) C-reactive protein as a marker for acute coronary syndromes, Eur. Heart J., 18, 1897–1902.

    PubMed  CAS  Google Scholar 

  45. Ridker, P. M., Hennekens, C. H., Buring, J. E., & Rifali, N. (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women, N. Engl. J. Med., 342, 836–842.

    Article  PubMed  CAS  Google Scholar 

  46. Cermak, J. C., Key, N. S., Bach, R. R., Balla, J., Jacob, H. S., & Vercelloth, G. M. (1993) C-reactive protein induces peripheralbloodmonocytes to synthesize tissue factor, Blood, 82, 513–520.

    PubMed  CAS  Google Scholar 

  47. Pepys, M. B., Rowe, I. F., & Baltz, M. L. (1985) C-reactive protein: binding to lipids and lipoproteins, Int. Rev. Exp. Pathol., 27, 83–111.

    PubMed  CAS  Google Scholar 

  48. Lagrand, W. K., Niessen, H. W. M., Wolbink, G. J., Jaspars, L. H., Visser, C. A., Verheugt, F. W., Meijers, C. J., & Hack, C. E. (1997) C-reactive protein colocalizeswithcomplement in human hearts during acute myocardial infarction, Circulation, 95, 97–103.

    PubMed  CAS  Google Scholar 

  49. Maseri, A. (1997) Inflammation, atherosclerosis and ischaemic events—exploring the hidden side of the moon, N. Engl. J. Med., 336, 1014–1016.

    Article  PubMed  CAS  Google Scholar 

  50. Kanel, W. B., Anderson, K., & Wilson, P. W. F. (1992) White blood count and cardiovascular disease, JAMA, 267, 1253–1256.

    Article  Google Scholar 

  51. Gillum, R. E, Ingram, D. D., & Makuc, D. M. (1993) White blood cell count, coronary artery disease and death: the NHANES I—Epidemiological follow up study, Am. Heart J., 125, 855–863.

    Article  PubMed  CAS  Google Scholar 

  52. Wiejenberg, M. P., Feskens, E. J. M., & Kromhout, D. (1996) White blood cell count and the risk of coronary heart disease and all-cause mortality in elderly men, Arterioscler. Thromb. Vasc. Biol., 16, 499–503.

    Google Scholar 

  53. Gillum, R. F., & Makuc, D. M. (1992) Serum albumin, coronary heart disease and death, Am. Heart J., 123, 507–513.

    Article  PubMed  CAS  Google Scholar 

  54. Kuller, L. H., Eichner, J. E., Orchard, J. T., Grandits, G. A., & Tracy, R. P. (1991) The reaction between serum albumin levels and risk of coronary disease in the Multiple Risk Factor Intervention Trial, Am. J. Epidemiol, 134, 1266–1277.

    PubMed  CAS  Google Scholar 

  55. Xu, L., Badolato, R., Murphy, W. J., Longo, D. L., Anver, M., Hale, S., Oppenheim, J. J., & Wang, J. M. (1995) A novel biological function of serum amyloid A-induction of T-lymphocyte migration and adhesion, J. Immunol., 155, 1184–1190.

    PubMed  CAS  Google Scholar 

  56. Kisilevsky, R., & Subrahmanyan, L. (1992) Serum amyloid A changes high density lipoproteins cellular affinity, Lab. Invest., 66, 778–785.

    PubMed  CAS  Google Scholar 

  57. Berliner, J. A., Navab, M., Fogelman, A. M., Frank, J. S., Demer, L. L., Edwards, P. A., Watson, A. D., & Lusis, A. J. (1995) Atherosclerosis basic mechanisms — oxidation, inflammation and genetics, Circulation, 91, 2488–2496.

    PubMed  CAS  Google Scholar 

  58. Meek, R. L., Urieli-Shoval, S., & Benditt, E. P. (1994) Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid A, Proc. Acad. Sci. USA, 91, 3186–3190.

    Article  CAS  Google Scholar 

  59. Liao, F., Lusis, A. J., Berliner, J. A., Fogelman, A. M., Kindy, M., de Beer, M. C., & de Beer, F. C. (1994) Serum amyloid A, protein family: differential induction by oxidized lipids in mouse strains, Arterioscler. Thromb., 14, 1475–1479.

    PubMed  CAS  Google Scholar 

  60. Fyfe, A. I., Rottenberg, L. S., de Beer, F. C., Cantor, R. M., Rotter, J. I., & Lusis, A. J. (1997) Association between serum amyloid A, proteins and coronary artery disease: evidence from two distinct atherosclerotic process, Circulation, 96, 2914–2919.

    PubMed  CAS  Google Scholar 

  61. Luizzo, G., Biasucci, L. M., Gallimore, J. R., Grillo, R. L, Rebuzzi, A. G., Pepys, M. B., & Maseri, A. (1994) Prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina, N. Engl. J. Med., 331, 417–424.

    Article  Google Scholar 

  62. Danesh, J., Muir, J., Wong, Y. K., Ward, M., Gallimore, J. R., & Pepys, M. B. (1999) Riskfactors for coronary heart disease and acute phase proteins. A population-based study, Eur. Heart J., 20, 954–959.

    Article  PubMed  CAS  Google Scholar 

  63. Stafforini, D. M., McIntyre, T. M., Zimmerman, G. A., & Prescott, S. M. (1997). Platelet activation factor acetylhydrolases, J. Biol. Chem., 272, 17895–17898.

    Article  PubMed  CAS  Google Scholar 

  64. Tjoelker, L. W., Wilder, C., Eberhardt, C., Stafforini, D. M., Dietsch, G., Schimpf, B., Hooper, S., Le Trong, H., Cousens, L. S., & Zimmerman, G. A. (1995) Antiinflammatory properties of a platelet-activating factor acetylhydrolase, Nature, 374, 549–553.

    Article  PubMed  CAS  Google Scholar 

  65. Berliner, J. A., Leitinger, N., Watson, A., Huber, J., Fogelman, A., & Navab, M. (1997) Oxidized lipids in atherogenesis: formation,destruction and action, Thromb. Haemost., 78, 195–199.

    PubMed  CAS  Google Scholar 

  66. Kugiyama, K., Ota, Y, Takazoe, K., Moriyama, Y, Kawano, H., Sakamoto, T., Soejima, H., Ogawa, H., Doi, H., Sugiyama, S., & Yasue, H. (1999) Circulating levels of secretory type II phospholipase A (2) predict coronary events in patients with coronary artery disease, Circulation, 100, 1280–1284.

    PubMed  CAS  Google Scholar 

  67. Leitinger, N., Watson, A. D., Hama, S. Y, Ivandic, B., Qiao, J. H., Huber, J., Faull, K. F., Grass, D. S., Fogelman, A. M., de Beer, F. C., Lusis, A. J., & Berliner, A. J. (1999) Role of group II secretory phospholipase A2 in atherosclerosis 2. Potential involvement of biologically active oxidized phospholipids, Arteriosder. Thromb. Vasc. Biol., 19, 1291–1298.

    CAS  Google Scholar 

  68. Ivanchi, B., Castellani, L. W., Wang, X. P., Qiao, J. H., Mehrabian, M., Navab, M., Fogelman, A. M., Grass, D. S., Swanson, M. E., de Beer, M. C., de Beer, F., & Lusis, A. J. (1999) Role of Group II phospholipase A2 in atherosclerosis. 1. Increased atherogenosis an altered lipoproteins in transgenic mice expressing group II phospholipase A2, Arterioscler. Thromb. Vasc. Biol., 19, 1284–1290.

    Google Scholar 

  69. Cao, Y., Stafforini, D. M., Zimmerman, G. A., McIntyre, T. M., & Prescott, S. M. (1998) Expression of plasma platelet-activating factor acetylhydrolase is transcriptionally regulated by mediators of inflammation, J. Biol. Chem., 273, 4012–4020.

    Article  PubMed  CAS  Google Scholar 

  70. Caslake, M. J., Packard, C. J., Suckling, K. E., Holmes, S. D., Chamberlain, P., & MacPhee, C. H. (2000) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis, 150, 413–419.

    Article  PubMed  CAS  Google Scholar 

  71. Packard, C. J., O’Reilly, D. S. J., Caslake, M. J., McMahon, A. D., Ford, I., Cooney, J., MacPhee, C. H., Suckling, K. E., Krishna, M., Wilkinson, F. E., Rumley, A., Lowe, G. D. O., for the West of Scotland Coronary Prevention Study Group (2000) Lipoprotein-associated phospholipase A2, as an independent predictor of coronary heart disease, N. Engl. J. Med., 343, 1148–1155.

    Article  PubMed  CAS  Google Scholar 

  72. Biasucci, L. M., Batelli, A., Luizzo, G., Altamura, S., Caligiuri, G., Monaco, C., Rebuzzi, A. G., Ciliberto, G., & Maseri, A. (1996) Elevated levels of interleukin-6 in unstable angina, Circulation, 94, 874–877.

    PubMed  CAS  Google Scholar 

  73. Mendall, M. A., Patel, A., Asante, M., Ballam, L., Morris, J., Strachan, D. P., Camm, A. J., & Northfield, T. C. (1997) Relation of serum cytokine concentrations to cardiovascular risk factors and coronary heart disease, Heart, 78, 273–277.

    PubMed  CAS  Google Scholar 

  74. Harris, T. B., Fenrucci, L., Tracy, R. P., Corti, M. C., Wacholder, S., Ettinger, W. H., Jr., Heimovitz, H., Cohen, H. J., & Wallace, R. (1999) Association of elevated interleukin-6 and C reactive protein levels with mortality in the elderly. Am. J. Med., 106, 502–512.

    Article  Google Scholar 

  75. Ridker, P. M., Rifai, N., Stampfer, M. J., & Hennekens, C. H. (2000) Plasma concentrations of interleukin-6 and the risk of future myocardial infarction among apparently healthy men, Circulation, 101, 1767–1772.

    PubMed  CAS  Google Scholar 

  76. Bataille, R., & Klein, B. (1992) C-reactive protein levels as a direct indicator of interleukin-6 levels in human in vivo, Arthritis Rheum., 35, 982–984.

    Article  PubMed  CAS  Google Scholar 

  77. Van Snick, J. (1990) Interleukin-6: an overview, Annu. Rev. Immunol., 8, 253–278.

    Article  PubMed  Google Scholar 

  78. Papanicolaou, D. A., Wilder, R. L., Manolagas, S. C., & Chrousos, G. P. (1998) The pathophysiologic roles of interluekin-6 in human disease, Ann. Intern. Med., 128, 127–137.

    PubMed  CAS  Google Scholar 

  79. Seino, Y., Dkeda, U., Ikeda, M., Yamamoto, K., Misawa, Y., Hasegawa, T., Kano, S., & Shimada, K. (1994) Interleukin-6 gene transcripts are expressed in human atherosclerotic lesions, Cytokine, 6, 87–91.

    Article  PubMed  CAS  Google Scholar 

  80. Hojo, Y., Ikeda, U., Katsuki, T., Mizumo, O., Fukazawa, H., Kurosaki, K., Fujikawa, H., & Shimada, K. I. (2000) Interleukin-6 expression in coronary circulation after coronary agionplasty as a risk factor for restenosis, Heart, 84, 83–87.

    Article  PubMed  CAS  Google Scholar 

  81. Biasucci, L. M., Luizzo, G., Fortuzzi, G., Caligiuri, G., Rebuzzi, A. G., Ginetti, F., Dinarello, C. A., & Maseri, A. (1999) Increasing levels of interleukin (IL) — IRa and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in hospital coronary events, Circulation, 99, 2079–2084.

    PubMed  CAS  Google Scholar 

  82. Francis, S. E., Camp, N. J., Dewberry, R. M., Gunn, J., Syrris, P., Carter, N. D., Jeffrey, S., Kaski, J. C., Cumberland, D. C., Duff, G. W., & Crossman, D. C. (1999) Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease, Circulation, 99, 861–866.

    PubMed  CAS  Google Scholar 

  83. Hasdai, D., Scheinowitz, M., Liebowitz, E., Sclarovsky, S., Eldar, M., & Barak, V (1996) Increased serum concentrations of interleukin 1-beta in patients with coronary artery disease, Heart, 76, 24–28.

    Article  PubMed  CAS  Google Scholar 

  84. Ridker, P. M., Rifai, N., Pfeffer, M., Sacks, F., Lepage, S., & Braunwald, E. (2000) Elevation of tumour necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction, Circulation, 101, 2149–2153.

    PubMed  CAS  Google Scholar 

  85. Bevilacqua, M. P., Nelson, R. M., Mannori, G., & Cecconi, O. (1994) Endothelial-leucocyte adhesion molecules in humandisease, Annu. Rev. Med., 45, 361–378.

    Article  PubMed  CAS  Google Scholar 

  86. Ridker, P. M., Hennekens, E. H., Roitman-Johnson, B., Stampfer, M. J., & Allen, J. (1998) Plasma concentrations of soluble intercellular adhesion molecule I and risks of futuremyocardial infarction in apparently healthy mean, Lancet, 351, 88–92.

    Article  PubMed  CAS  Google Scholar 

  87. Haught, W. H., Mansour, M., Rothlein, R., Kishmoto, T. K., Mainolfi, E. A., Hendricks, C., & Mehta J. L. (1996) Alterations in circulating adhesion molecule-1 and L-selectin: furtherevidence for chronic inflammation in ischaemic heart disease, Am. Heart J., 132, 1–8.

    Article  PubMed  CAS  Google Scholar 

  88. Ogawa, H., Yasue, H., Miyao, Y., Sakamoto, T., Soljima, H., Nishiyama, K., Kaikita, K., Suefuji, H., Misumi, K., Takazoe, K., Kugiyama, K., & Yoshimura, M. (1999) Plasma soluble intercellular adhesion molecule-1 levels in coronary circulation in patients with unstable angina, Am. J. Cardiol, 83, 38–42.

    Article  PubMed  CAS  Google Scholar 

  89. Rifai, N., Jourbran, R., Yu, H., Asami, M., & Joumu, M. (1999) Inflammatory markers in men with angiographically documented coronary heart disease, Clin. Chem., 45, 1967–1973.

    PubMed  CAS  Google Scholar 

  90. Porsch-Oezcueruemez, M., Kurz, D., Kloer, H. U, & Luley, C. (1999) Evaluation of serum levels of solubilized adhesionmolecules and cytokine receptors in coronary heart disease, J. Am. Coll. Cardiol., 34, 1995–2001.

    Article  PubMed  CAS  Google Scholar 

  91. Paiker, J. E., Raal, F. J., Veller, M., von Arb, M., Chetty, N., & Naram, N. H. (2000) Cell adhesion molecules—can they be used to predict coronary artery disease in patients with hypercholesterolaemia? Clin. Chim. Acta., 293, 105–113.

    Article  PubMed  CAS  Google Scholar 

  92. Sinisalo, J., Paronen, J., Mattila, K. J., Syrjala, M., Alfthan, G., Palonio, T., Merrinen, M. S., & Vaarala, O. (2000) Relation of inflammation to vascular function in patients with coronary heart disease, Atherosclerosis, 149, 403–411.

    Article  PubMed  CAS  Google Scholar 

  93. John, S., Jacobi, J., Delles, C., Schlaich, M. P., Alter, O., & Schmieder, R. E. (2000) Plasma soluble adhesion molecules and endothelium dependent vasodilation in early human atherosclerosis, Clin. Sci., 98, 521–529.

    Article  PubMed  CAS  Google Scholar 

  94. Semaan, H. B., Gurbel, P. A., Anderson, J. L., Muhlestein, J. B., Carlquist, J. F., Horne, B. D., & Serebruany, V. L. (2000) Soluble VCAM-I and E-selectin but not ICAM-I discriminate endothelial injury in patients with documented coronary artery disease, Cardiology, 93, 7–10.

    Article  PubMed  CAS  Google Scholar 

  95. Ghaisas, N. K., Shahi, C. N., Foley, B., Goggins, M., Crean, P., Kelly, A., Kelleher, D., & Walsh, M. (1997) Elevated levels of soluble adhesion molecules in peripheral blood of patients with unstable angina, Am. J. Cardiol., 80, 617–619.

    Article  PubMed  CAS  Google Scholar 

  96. Caulin-Glaser, T., Farrell, W. J., Pfau, S. E., Zaret, B., Bunger, K., Setaro, J. F., Brennam, J. J., Bender, J. R., Cleman, M. W., Cabin, H. S., & Remetz, M. S. (1998) Modulation of circulating cellular adhesion molecules in postmenopausal women with coronary artery disease, J. Am. Coll. Cardiol, 31, 1555–1560.

    Article  PubMed  CAS  Google Scholar 

  97. Sburouni, E., Kroupsis, C., Kyriakides, Z. S., Koniavitou, K., & Kremastinos, D. T. (2000) Cell adhesion molecules in relation to simvastatin and hormone replacement therapy in coronary artery disease, Eur. Heart J., 21, 963–964.

    Article  Google Scholar 

  98. McCarty, M. F. (1998) Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation,smoking, diabetes and visceral obesity: down-regulation with essential fatty acids, ethanol and pentoxiphylline. Med. Hypotheses, 52, 465–477.

    Article  Google Scholar 

  99. Yudkin, J. S., Kumari, M., Humphries, S. E., & Mohamed-Ali, V. (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? [Review], Atherosclerosis, 148, 209–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Atherosclerosis and Inflammation. In: Fong, I.W. (eds) Infections and the Cardiovascular System: New Perspectives. Emerging Infectious Diseases of the 21st Century, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-306-47926-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47926-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47404-0

  • Online ISBN: 978-0-306-47926-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics