Skip to main content

High-Speed Logic, Circuits, Libraries and Layout

  • Chapter
Closing the Gap Between ASIC & Custom

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allam, M. et al., “Effect of Technology Scaling on Digital CMOS Logic Styles,” IEEE Custom Integrated Circuits Conference, Orlando, FL, May 2000, pp. 401–408.

    Google Scholar 

  2. Allam, M. et al., “Dynamic Mode Logic (DyCML): A New Low-Power High — Performance Logic Style”, IEEE Journal of Solid-State Circuits, vol. 36, no 3. March 2001, pp 550–556.

    Article  Google Scholar 

  3. Allen, D.H. et al., “Custom circuit design as a driver of microprocessor performance”, IBM Journal of Research and Development, vol. 44, no. 6, November 2000, pp. 799–822.

    Article  Google Scholar 

  4. Anderson, C, et al., “Physical Design of A Fourth-Generation POWER GHz Microprocessor,” IEEE International Solid-State Circuits Conference, 2001.

    Google Scholar 

  5. Avant!, Hercules-II Hierarchical Physical Verification and Mask Generation, 2002. http://www.avanticorp.com/Avant!/SolutionsProducts/Products/Item/1,1500,7,00.html

  6. Berstein, K. et al., High Speed CMOS Design Styles, Kluwer Academic Publishers. 1999.

    Google Scholar 

  7. Bohr, M., et al., “A high performance 0.25um logic technology optimized for 1.8 V operation,” Technical Digest of the International Electron Devices Meeting, 1996, pp. 847–850.

    Google Scholar 

  8. Burns, J., “Cell Libraries — Build vs. Buy; Static vs. Dynamic,” Proceedings of the 36 th Design Automation Conference, New Orleans, LA, June 1999. Panel Discussion.

    Google Scholar 

  9. Chang, A., “VLSI Datapath Choices: Cell-Based Versus Full-Custom”, Masters Thesis, Massachusetts Institute of Technology, February 1998.

    Google Scholar 

  10. Chau, R., “30nm and 20nm Physical Gate Length CMOS Transistors,” 2001 Silicon Nanoelectronics Workshop. June 2001. Talk Slides.

    Google Scholar 

  11. Chen, C., Chu, C., and Wong, D., “Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian Relaxation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 7, July 1999, pp. 1014–1025.

    Google Scholar 

  12. Clark, L. et al., “A Scalable Performance 32b Microprocessor,” IEEE International Solid-State Circuits Conference, 2001, pp. 186–187, 451.

    Google Scholar 

  13. Collett, R., “Design Productivity: How to Measure It, How to Improve It,” Panel Session, at the 35 th Design Automation Conference, San Francisco, CA, June 1998.

    Google Scholar 

  14. Cooley, J. The Surprise Physical Synthesis Tape-Out Census. December 2000.

    Google Scholar 

  15. Curran, B. “A 1.1GHz First 64b Generation Z900 Microprocessor,” IEEE International Solid-State Circuits Conference, 2001, pp. 194–195, 453–455.

    Google Scholar 

  16. Dally, W. and Poulton, J., Digital Systems Engineering, Cambridge Univ. Press, 1998.

    Google Scholar 

  17. Dally, W. et al., “The Message-Driven Processor: A Multicomputer Processing Node with Efficient Mechanisms”, IEEE Micro, April 1992.

    Google Scholar 

  18. Dally, W. et al., “Architecture and Implementation of the Reliable Router”, Hot-Interconnects II, Palo Alto, CA, August 1994.

    Google Scholar 

  19. Dobberpuhl, D. et al., “A 200 MHz 64-b dual-issue CMOS microprocessor”, IEEE Journal of Solid-State Circuits, vol. 27, no 11, November 1992, pp. 1555–1567.

    Article  Google Scholar 

  20. Doran, R.W., “Variants of an Improved Carry Look-Ahead Adder”, IEEE Transactions on Computers, vol. 37, no. 9, September 1988, pp. 1110–1113.

    Article  MathSciNet  Google Scholar 

  21. Fishburn, J., and Dunlop, “A. TILOS: A Posynomial Programming Approach to Transistor Sizing,” Proceedings of the International Conference on Computer-Aided Design, 1985. pp. 326–328.

    Google Scholar 

  22. Gaddis, N. and Lotz, J., “A 64-b Quad-Issue CMOS RISC Microprocessor”, IEEE Journal of Solid-State Circuits, vol. 31, no. 11, November 1996, pp. 1697–1702.

    Article  Google Scholar 

  23. Gargini, P., “Intel Process Technology Trends”, Intel Developers Forum, 2001. Talk Slides.

    Google Scholar 

  24. Gavrilov, S., et al., “Library-Less Synthesis for Static CMOS Combinational Logic Circuits,” Proceedings of the International Conference on Computer-Aided Design, 1997. pp. 658–663.

    Google Scholar 

  25. Ghani, T. et al., “100nm Gate Length High Performance Low Power CMOS Transistor Structure,” International Electron Devices Meeting, 1999 Talk Slides.

    Google Scholar 

  26. Grodstein, J., et al., “A Delay Model for Logic Synthesis of Continuously-Sized Networks,” Proceedings of the International Conference on Computer-Aided Design, 1995, pp. 458–462.

    Google Scholar 

  27. Gronowski, P. et al., “High-Performance Microprocessor Design”, IEEE Journal of Solid-State Circuits, vol. 33, no. 5, May 1998, pp. 676–686.

    Article  Google Scholar 

  28. Haddad, R., van Ginneken, L., and Shenoy, N., “Discrete Drive Selection for Continuous Sizing,” Proceedings of the International Conference on Computer Design, 1997, pp. 110–115.

    Google Scholar 

  29. Harris, D. and Horowitz, M., “Skew Tolerant Domino Circuits”, IEEE Journal of Solid-State Circuits, vol. 32, no. 11, November 1997, pp. 1702–1711.

    Article  Google Scholar 

  30. Hartman, D., “Floating Point Multiply/Add Unit for the M-Machine Node Processor”, Masters Thesis, Massachusetts Institute of Technology. May 1996, pp. 47–54.

    Google Scholar 

  31. Hauck, C., and Cheng, C., “VLSI Implementation of a Portable 266MHz 32-Bit RISC Core”, in the Microprocessor Report. October 22, 2001.

    Google Scholar 

  32. Hill, D., “Sc2: A Hybrid Automatic Layout System,” Proceedings of the International Conference on Computer-Aided Design, 1985, pp. 172–174.

    Google Scholar 

  33. Ho, R. et al., “The Future of Wires,” Proceedings of the IEEE, April 2001, pp. 490–504.

    Google Scholar 

  34. Hossain, R., et al., “A Comparison Between Static and Domino Logic”, Submitted in March 2002 to the IEEE Journal of Solid State Circuits.

    Google Scholar 

  35. IBM Corporation, SA-27E ASIC Databook, February 2000.

    Google Scholar 

  36. Kapadia, H., and Horowitz, M., “Using Partitioning to Help Convergence in the Standard-Cell DesignAutomation Methodology,” Proceedings of the 37 th Design Automation Conference, 1999, pp. 592–597.

    Google Scholar 

  37. Keckler, S. et al., “The MIT Multi-ALU Processor”, Hot Chips IX, August 1997.

    Google Scholar 

  38. Keutzer, K., Kolwicz, K., and Lega, M., “Impact of Library Size on the Quality of Automated Synthesis,” Proceedings of the International Conference on Computer-Aided Design, 1987, pp. 120–123.

    Google Scholar 

  39. Kogge, P.M., and Stone, H.S., “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations”, IEEE Transactions on Computers, vol. C22, no. 8. August 1973, pp. 786–793.

    MathSciNet  Google Scholar 

  40. Lau, M. et al., “A Packet-Memory-Integrated 44Gb/s Switching Processor with a 10Gb Port and 12Gb ports”, IEEE International Solid-State Circuits Conference, 2002.

    Google Scholar 

  41. Ling, H., “High-speed Binary Adder”, IBM Journal of Research and Development, vol. 25, no. 2–3, May-June 1981, pp. 156–166.

    Google Scholar 

  42. Mead, C. and Conway, L., Introduction to VLSI Systems, Addison Wesley, 1980.

    Google Scholar 

  43. Montanaro et al., “A 160MHz, 32-b 0.5-V CMOS RISC Microprocessor”, IEEE Journal of Solid-State Circuits, vol. 31, no 11, November 1996, pp 1703–1714.

    Article  Google Scholar 

  44. Naffziger, S. and Hammond G., “The Implementation of the Next-Generation 64b Itanium Microprocessor,” IEEE International Solid-State Circuits Conference, 2002.

    Google Scholar 

  45. Nikolić, B EE241 — Spring 2001 Advanced Digital Integrated Circuits — Lecture 18: Adders. 2001. http://www.bwrc.eecs.berkeley.edu/Classes/icdesign/ee241_s01 /Lectures/lecture18-adders-grayscale.pdf

  46. Northrop, G. and Lu, P., “A Semi-custom Design Flow in High-performance Microprocessor Design,” Proceedings of the 38 th Design Automation Conference, Las Vegas, NV, June 2001, pp. 426–431.

    Google Scholar 

  47. Nowka, K., and Galambos, T., “Circuit Design Techniques for a Gigahertz Integer Microprocessor,” Proceedings of the International Conference on Computer Design, 1998, 11–16.

    Google Scholar 

  48. Okano, H., “An 8-Way VLIW Embedded Multimedia Processor Built in 7-Layer Metal 0.11um CMOS Technology,” IEEE International Solid-State Circuits Conference, 2002.

    Google Scholar 

  49. Paraskevopoulos, D.E and Fey, C., “Studies in LSI Technology Economics III: Design Schedules for Applications Specific Integrated Circuits,” IEEE Journal of Solid-State Circuits, vol. 22. April 1987, pp. 223–229.

    Article  Google Scholar 

  50. Rohrer, N. et al., “A 480 MHz RISC Microprocessor in 0.12um Leff CMOS Technology with Copper Interconnects,” IEEE International Solid-State Circuits Conference, 1998.

    Google Scholar 

  51. Samueli, H., “Designing in the New Millennium — It’s Even Harder Than We Thought,” keynote speech at the 38 th Design Automation Conference, Las Vegas, NV, June 2001.

    Google Scholar 

  52. Scott, K., and Keutzer, K., “Improving Cell Libraries for Synthesis,” Proceedings of the Custom Integrated Circuits Conference, 1994, pp. 128–131.

    Google Scholar 

  53. Stojanovic, V. and Oklobdzija, V., “Comparative Analysis of Master-Slave Latches and Flip-Flops for High-Performance and Low-Power Systems,” IEEE Journal of Solid-State Circuits, vol. 34, no. 4, April 1999, pp. 536–548.

    Article  Google Scholar 

  54. Sylvester, D. and Keutzer, K., “Getting to the Bottom of Deep Sub-micron,” Proceedings of the International Conference on Computer Aided Design, November 1998, pp. 203–211.

    Google Scholar 

  55. Sylvester, D., Jiang, W., and Keutzer, K. BACPAC — Berkeley Advanced Chip Performance Calculator. 2000. http://www.-device.eecs.berkeley.edu/~dennis/bacpac/

  56. Kim, T. and Um, J., “A Practical Approach to the Synthesis of Arithmetic Circuits using Carry-Save-Adders,” IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 19, no. 5, May 2000, pp. 615–624

    Google Scholar 

  57. Taiwan Semiconductor Corporation. TSMC Corporate Brochure.

    Google Scholar 

  58. Texas Instruments, Inc. GS30 0.15um CMOS Standard Cell Commercial Product Information Sheet.

    Google Scholar 

  59. Thompson, S. et al., “Enhanced 130nm Generation Logic Technology Featuring 60nm Transistors Optimized for High Performance and Low Power at 0.7-1.4V,” International Electron Devices Meeting, 2001.

    Google Scholar 

  60. Tyagi, S. et al., “A 130nm Generation Logic Technology Featuring 70nm Transistors, Dual Vth Transistors and 6 Layers of Cu Interconnect,” International Electron Devices Meeting, 2000, talk slides.

    Google Scholar 

  61. United Microelectronics Corporation, Foundry Services Guide.

    Google Scholar 

  62. Weste, N.H. and Eshraghian, K., Principles of CMOS VLSI Design: A Systems Perspective, 2nd ed. Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  63. Williams, J. and O’Neill, J., “The Implementation of Two Multiprocessor DSP’s: A Design Methodology Case Study,” IEEE International Solid-State Circuits Conference, 2001.

    Google Scholar 

  64. Yang, S. et al., “A High Performance 180nm Generation Logic Technology,” International Electron Devices Meeting, 1998.

    Google Scholar 

  65. Zhong, G., Koh, C.-K., and Roy, K., “A Twisted-Bundle Layout Structure for Minimizing Inductive Coupling Noise,” Proceedings of the International Conference on Computer Aided Design, 2000, pp. 406–411.

    Google Scholar 

  66. Zimmerman, R. and Fichtner, W., “Low-Power Logic Styles: CMOS Versus Pass-Transistor Logic” IEEE Journal of Solid-State Circuits, vol. 32, no. 27, July 1997, pp. 1079–1090.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chang, A., Dally, W.J., Chinnery, D., Keutzer, K., Zlatanovici, R. (2004). High-Speed Logic, Circuits, Libraries and Layout. In: Closing the Gap Between ASIC & Custom. Springer, Boston, MA. https://doi.org/10.1007/0-306-47823-4_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47823-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7113-3

  • Online ISBN: 978-0-306-47823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics