Skip to main content

Achieving 550MHz in a Standard Cell ASIC Methodology

The Texas Instruments SP4140 Disk Drive Read Channel

  • Chapter
  • 395 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altekar, S., et al. “A 700 Mb/s BiCMOS Read Channel Integrated Circuit,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco CA, February 2000, pp. 184–185, 445.

    Google Scholar 

  2. Black, P., and Meng, T. “A 140 MB/s 32-state radix-4 Viterbi decoder,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, December 1992, pp. 1877–1885.

    Article  Google Scholar 

  3. Fettweis, G., et al. “Reduced-complexity Viterbi detector architectures for partial response signaling,” IEEE Global Telecommunications Conference, Singapore, Technical Program Conference Record, vol. 1, November 1995, pp. 559–563.

    Google Scholar 

  4. Fettweis, G., and Meyer, H. “High-speed parallel Viterbi decoding algorithm and VLSI architecture,” IEEE Communications Magazine, vol. 29, no. 8, May 1991, pp. 46–55.

    Google Scholar 

  5. Fey, C. F., and Paraskevopoulos, D. E. “Studies in LSI Technology Economics IV: Models for gate design productivity,” IEEE Journal of Solid-State Circuits, vol. SC-24, no. 4, August 1989, pp. 1085–1091.

    Google Scholar 

  6. Gronowski, P., et al. “High-Performance Microprocessor Design,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, May 1998, pp. 676–686.

    Article  Google Scholar 

  7. Harris, D., and Horowitz, M. “Skew-Tolerant Domino Circuits,” IEEE Journal of Solid-State Circuits, vol. 32, no. 11, November 1997, pp. 1702–1711.

    Article  Google Scholar 

  8. Jain, R., Yang, P.T., and Yoshino, T. “FIRGEN: a computer-aided design system for high performance FIR filter integrated circuits,” IEEE Transactions on Signal Processing, vol. 39, no. 7, July 1991, pp. 1655–1668.

    Article  Google Scholar 

  9. Lee, I., and Sonntag, J.L. “A new architecture for the fast Viterbi algorithm,” IEEE Global Telecommunications Conference, San Francisco CA, Technical Program Conference Record, vol. 3, November 2000, pp. 1664–1668.

    Google Scholar 

  10. Marvell, Marvell Introduces HighPhyTM, the Industry’s First Read Channel PHY to Exceed Gigahertz Speeds, December 2000. http://www.marvell.com/news/dec4_00.htm

  11. Messerschmitt, D. G. “Breaking the recursive bottleneck,” in Skwirzynski, J.K. (ed.) Performance Limits in Communication Theory and Practice, Kluwer, 1988, pp. 3–19.

    Google Scholar 

  12. Nazari, N. “A 500 Mb/s disk drive read channel in 0,25 µm CMOS incorporating programmable noise predictive Viterbi detection and trellis coding,” IEEE International Solid-State Circuits Conference, Digest of TechnicalPapers, San Francisco CA, February 2000, pp. 78–79.

    Google Scholar 

  13. Nikolić B. et al. “Sense amplifier-based flip-flop,” IEEE Journal of Solid-State Circuits, vol. 35, June 2000, pp. 876–884.

    Google Scholar 

  14. Partovi, H., “Clocked storage elements,” in Chandrakasan, A., Bowhill, W.J., and Fox, F. (eds.). Design of High-Performance Microprocessor Circuits. IEEE Press, Piscataway NJ, 2000, pp. 207–234.

    Google Scholar 

  15. Partovi, H., et al. “Flow-through latch and edge-triggered flip-flop hybrid elements,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco CA, February 1996, pp. 138–139.

    Google Scholar 

  16. Staszewski, R.B., Muhammad, K., and Balsara, P. “A 550-MSample/s 8-Tap FIR digital filter for magnetic recording read channels,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, Aug. 2000, pp. 1205–1210.

    Article  Google Scholar 

  17. Stojanovic, V., and Oklobdzija, V.G. “Comparative analysis of master-slave latches and flip-flops for high-performance and low-power systems,” IEEE Journal of Solid-State Circuits, vol. 34, no. 4, April 1999, pp. 536–548.

    Article  Google Scholar 

  18. Sylvester, D.; Keutzer, K. “Getting to the bottom of deep submicron,” Proceedings of the International Conference on Computer Aided Design, San Jose CA, November 1998, pp. 203–11.

    Google Scholar 

  19. Synopsys, Synopsys Design Compiler, Reference Manual, Synopsys.

    Google Scholar 

  20. Thapar, H. K. and Patel, A.M. “A Class of Partial Response Systems for Increasing Storage Density in Magnetic Recording,” IEEE Transactions on Magnetics, vol. MAG-23, no. 5 part 2, September 1987, pp. 3666–3678.

    Google Scholar 

  21. Texas Instruments, Texas Instruments SP4140 CMOS Digital Read Channel, 1999. http://www.ti.com/sc/docs/storage/products/sp4140/index.htm

  22. Weste, N., and Eshraghian, K., Principles of CMOS VLSI Design, 2nd Ed. Addison-Wesley, Reading MA, 1992, pp. 547–554.

    Google Scholar 

  23. Yeung, A.K., and Rabaey, J.M. “A 210 Mb/s radix-4 bit-level pipelined Viterbi decoder,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco CA, February 1995, pp. 88–89, 344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chinnery, D., Nikolić, B., Keutzer, K. (2004). Achieving 550MHz in a Standard Cell ASIC Methodology. In: Closing the Gap Between ASIC & Custom. Springer, Boston, MA. https://doi.org/10.1007/0-306-47823-4_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-47823-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7113-3

  • Online ISBN: 978-0-306-47823-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics