Skip to main content

Monitoring HIV-1 Subtype Distribution

  • Chapter
AIDS in Africa

Conclusion

The global HIV epidemic is extremely heterogeneous and dynamic in nature, embracing several epidemics specific to different geographic locations and populations, as evidenced in Africa. Although the degree of surveillance for HIV-1 strains has increased in recent years, more information is needed. Both the current incidence and the current distribution of HIV subtypes need to be better established. Only with these data, will it be possible to track changes in subtype distribution over time and detect the introduction of novel subtypes or CRFs into populations. This information is vital to delineating the historical and dynamic details of the epidemic. Subtype and strain surveillance is necessary to monitor the emergence of new subtypes and strains that may be naturally resistant to antiretroviral drugs. Finally, knowing the distribution of HIV-1 strains will likely be relevant for vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meda A, Gautier-Charpentier L, Soudré RB, et al. Serological diagnosis of human immunodeficiency virus in Burkina-Faso: reliable, practical strategies using less expensive commercial test kits. Bull World Health Organ, 1999;77:731–739.

    PubMed  CAS  Google Scholar 

  2. Stetler HC, Granade TC, Nunez CA, et al. Field evaluation of rapid HIV serologic tests for screening and confirming HIV-1 infection in Honduras. AIDS, 1997;11:369–375.

    Article  PubMed  CAS  Google Scholar 

  3. UNAIDS/WHO. Revised recommendations for the selection and use of HIV antibody tests. Wkly Epidemiol Rec, 1997;72:81–87.

    Google Scholar 

  4. Wilkinson D, Wilkinson N, Lombard C, et al. Onsite HIV testing in resource-poor settings: is one rapid test enough? AIDS, 1997;11:377–381.

    PubMed  CAS  Google Scholar 

  5. Kemp E, Rylatt DB, Bundesen PG, et al. Autologous red cell agglutination assay for HIV-1 antibodies: simplified test with whole blood. Science, 1988;241:1352–1354.

    PubMed  CAS  Google Scholar 

  6. Webber LM, Swanevelder C, Grabow WO, et al. Evaluation of a rapid test for HIV antibodies in saliva and blood. S Afr Med J, 2000;90: 1004–1007.

    PubMed  CAS  Google Scholar 

  7. Biggar RJ, Miley W, Miotti P, et al. Blood collection on filter paper: a practical approach to sample collection for studies of perinatal HIV transmission. J Acquir Immune Defic Syndr Hum Retrovirol, 1997;14:368–373.

    PubMed  CAS  Google Scholar 

  8. Boillot F, Peeters M, Kosia A, et al. Prevalence of the human immunodeficiency virus among patients with tuberculosis in Sierra Leone, established from dried blood spots on filter paper. Int J Tuberc Lung Dis, 1997;1:493–197.

    PubMed  CAS  Google Scholar 

  9. Johnstone F, Goldberg D, Tappin D, et al. The incidence and prevalence of HIV infection among childbearing women living in Edinburgh city, 1985–1995. AIDS, 1998;12:911–918.

    Article  PubMed  CAS  Google Scholar 

  10. Cassol S, Gill MJ, Pilon R, et al. Quantification of human immunodeficiency virus type 1 RNA from dried plasma spots collected on filter paper. J Clin Microbiol, 1997;35:2795–2801.

    PubMed  CAS  Google Scholar 

  11. Lallemant M, Jourdain G, Lallemant-Lecoeur S, et al. A trial of shortened zidovudine regimens to prevent mother-to-child transmission of human immunodeficiency virus type 1. New England Journal of Medicine, 2000;343:982–991.

    Article  PubMed  CAS  Google Scholar 

  12. Martinez PM, Torres AR, Ortiz de Lejarazu R, et al. Human immunodeficiency virus antibody testing by enzyme-linked fluorescent and western blot assays using serum, gingival-crevicular transudate, and urine samples. J Clin Microbiol, 1999;37:1100–1106.

    PubMed  CAS  Google Scholar 

  13. Tribble DR, Rodier GR, Saad MD, et al. Comparative field evaluation of HIV rapid diagnostic assays using serum, urine, and oral mucosal transudate specimens. Clin Diagn Virol, 1997;7:127–132.

    Article  PubMed  CAS  Google Scholar 

  14. Granade TC, Phillips SK, Parekh B, et al. Detection of antibodies to human immunodeficiency virus type 1 in oral fluids: a large-scale evaluation of immunoassay performance. Clin Diagn Lab Immunol, 1998;5:171–175.

    PubMed  CAS  Google Scholar 

  15. King SD, Wynter SH, Bain BC, et al. Comparison of testing saliva and serum for detection of antibody to human immunodeficiency virus in Jamaica, West-Indies. J Clin Virol, 2000;19:157–161.

    Article  PubMed  CAS  Google Scholar 

  16. Pasquier C, Bello PY, Gourney P, et al. A new generation of serum anti-HIV antibody immunocapture assay for saliva testing. Clinical Diagnostic Virology, 1997;8:195–197.

    CAS  Google Scholar 

  17. Schramm W, Angulo GB, Torres PC, et al. A simple saliva-based test for detecting antibodies to human immunodeficiency virus. Clin Diagn Lab Immunol, 1999;6:577–580.

    PubMed  CAS  Google Scholar 

  18. Malamud D. Oral diagnostic testing for detecting human immunodeficiency virus-1 antibodies: a technology whose time has come. Am J Med, 1997;102:9–14.

    PubMed  CAS  Google Scholar 

  19. Ettiegne-Traore V, Ghys PD, Maurice C, et al. Evaluation of an HIV saliva test for the detection of HIV-1 and HIV-2 antibodies in high-risk populations in Abidjan, Côte d’Ivoire. Int J STD AIDS, 1998;9:173–174.

    PubMed  CAS  Google Scholar 

  20. Fylkesnes K, Kasumba K. The first Zambian population-based HIV survey: saliva-based testing is accurate and acceptable. AIDS, 1998;12:540–541.

    Article  PubMed  CAS  Google Scholar 

  21. Fylkesnes K, Ndhlovu Z, Kasumba K, et al. Studying dynamics of the HIV epidemic: population-based data compared with sentinel surveillance in Zambia. AIDS, 1998;12:1227–1234.

    Article  PubMed  CAS  Google Scholar 

  22. Grant RM, Piwowar EM, Katongole-Mbidde E, et al. Comparison of saliva and serum for human immunodeficiency virus type 1 antibody testing in Uganda using a rapid recombinant assay. Clin Diagn Lab Immunol, 1996;3:640–644.

    PubMed  CAS  Google Scholar 

  23. Matee MI, Lyamuya EF, Simon E, et al. Detection of anti-HIV-1 IgG antibodies in whole saliva by GACELISA and western blot assays. East Afr Med J, 1996;73:292–294.

    PubMed  CAS  Google Scholar 

  24. Brookmeyer R, Quinn TC, Estimation of current human immunodeficiency virus incidence rates from a cross-sectional survey using early diagnostic tests. Am J Epidemiol, 1995;141:166–172.

    PubMed  CAS  Google Scholar 

  25. Beyrer C, Brookmeyer R, Natpratan C. Measuring HIV-1 incidence rates in Northern Thailand: prospective cohort results and estimates based on early diagnostic tests. J Acquir Immune Defic Syndr Hum Retrovirol, 1996;12:495–499.

    PubMed  CAS  Google Scholar 

  26. Busch MP, Lee LLL, Satten DR, et al. Time course of detection of viral and serologic markers preceding human immunodeficiency virus type 1 seroconversion: implications for screening of blood and tissue donors. Transfusion, 1995;35:91–97.

    PubMed  CAS  Google Scholar 

  27. Janssen RS, Satten GA, Stramer SL, et al. New testing strategy to detect early HIV-1 infection for use in incidence estimates and for clinical and prevention purposes. JAMA, 1998;280:42–48.

    Article  PubMed  CAS  Google Scholar 

  28. McIntosch K. Diagnostic virology. In: BN Fields, DM Knipe, PM Howley, eds. Fields Virology. Philadelphia: Lippincott-Raven, 1996;401–430.

    Google Scholar 

  29. McFarland W, Busch MP, Kellogg TA, et al. Detection of early HIV infection and estimation of incidence using a sensitive/less-sensitive enzyme immunoassay testing strategy at anonymous counseling and testing sites in San Francisco. J Acquir Immune Defic Syndr Hum Retrovirol, 1999;22: 484–489.

    CAS  Google Scholar 

  30. Diaz RS, Kallas EG, Castelo A, et al. Use of a less-sensitive enzyme immunoassay testing strategy to identify recently infected persons in a Brazilian prison: estimation of incidence and epidemiological tracing. AIDS, 1999;13:1417–1418.

    PubMed  CAS  Google Scholar 

  31. Apetrei C, Lousset-Ajaka I, Descamps D, et al. Lack of screening test sensitivity during HIV-1 non-B subtype seroconversions. AIDS, 1996;10: F57–F60.

    PubMed  CAS  Google Scholar 

  32. Barin F, M’Boup S, Denis F, et al. Serological evidence for virus related to simian T-lymphotic retrovirus III in residents of west-Africa. Lancet, 1985;II:1387–1389.

    Google Scholar 

  33. Clavel F, Guetard D, Brun-Vezinet F, et al. Isolation of a new human retrovirus from West African patients with AIDS. Science, 1986;233:343–346.

    PubMed  CAS  Google Scholar 

  34. Kanki PJ, Barin F, M’Boup S, et al. New human T-lymphotropic retrovirus related to simian Tlymphotropic virus type III (STLV-III AGM ). Science, 1986;232:238–243.

    PubMed  CAS  Google Scholar 

  35. Alizon M, Wain-Hobson S, Montagnier L, et al. Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell, 1986;46:63–74.

    Article  PubMed  CAS  Google Scholar 

  36. Benn S, Rutledge R, Folks T, et al. Genomic heterogeneity of AIDS retroviral isolates from North-America and Zaire. Science, 1985;230:949–951.

    PubMed  CAS  Google Scholar 

  37. Charneau P, Borman AM, Quillent C, et al. Isolation and envelope sequence of a highly divergent HIV-1 isolate: definition of a new HIV-1 group. Virology, 1994;205:247–253.

    Article  PubMed  CAS  Google Scholar 

  38. De Leys R, Vanderborght B, Van den Haesevelde M, et al. Isolation and characterization of an unusual human immuodeficiency retrovirus from two persons of west-central African origin. J Virol, 1990;64:1207–1216.

    PubMed  Google Scholar 

  39. Gurtler LG, Hauser PH, Eberle J, et al. A new subtype of human immunodeficiency virus type 1 (MVP-5180) from Cameroon. J Virol, 1994; 68:1581–1585.

    PubMed  CAS  Google Scholar 

  40. Simon F, Mauclère P, Roques P, et al. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat Med, 1998;4:1032–1037.

    PubMed  CAS  Google Scholar 

  41. Myers G, Korber B, Wain-Hobson S, et al. Los Alamos, NM: a compilation and analysis of nucleic acid and amino acid sequences. Los Alamos National Laboratory, Los Alamos, NM, 1992.

    Google Scholar 

  42. Robertson DL, Anderson JP, Bradac JA, et al. HIV-1 nomenclature proposal. Science, 2000; 288:55–56.

    Article  PubMed  CAS  Google Scholar 

  43. Barin F, Mulanga-Kabeya C. Diagnostic tools for HIVs. In: M Essex, SM’ Boup, PJ Kanki, MR Kalengayi, eds. AIDS in Africa. New York: Raven Press, 1994:109–131.

    Google Scholar 

  44. Mauclere P, Damond F, Apetrei C, et al. Synthetic peptide ELISAs for detection of and discrimination between group M and group O HIV-1 infection. AIDS Res Hum Retroviruses, 1997;13:987–993.

    PubMed  CAS  Google Scholar 

  45. Peeters M, Gueye A, M’Boup S, et al. Geographical distribution of HIV-1 group O viruses in Africa. AIDS, 1997;11:493–498.

    PubMed  CAS  Google Scholar 

  46. Carr JK, Laukkanen T, Salminen M, et al. Characterization of subtype A HIV-1 from Africa by full genome sequencing. AIDS, 1999;13:1819–1824.

    Article  PubMed  CAS  Google Scholar 

  47. Laukkanen T, Carr JK, Janssens W, et al. Virtually full-length subtype F and F/D recombinant HIV-1 from Africa and South America. Virology, 2000; 269:95–104.

    Article  PubMed  CAS  Google Scholar 

  48. Robertson DL, Sharp PM, McCutchan FE, et al. Recombination in HIV-1. Nature, 1995;374: 124–126.

    Article  PubMed  CAS  Google Scholar 

  49. Workshop report from the European Commission (DG XII, INCO-DC) and the joint United Nations program on HIV/AIDS. HIV-1 subtypes: implications for epidemiology, pathogenicity, vaccines and diagnostics. AIDS, 1997;11:UNAIDS17–UNAIDS36.

    Google Scholar 

  50. Baillou A, Janvier B, Leonard G, et al. Fine sero-typing of human immunodeficiency virus serotype 1 (HIV-1) and HIV-2 infections by using synthetic oligopeptides representing an immunodominant domain of HIV-1 and HIV-2/simian immunodeficiency virus. J Clin Microbiol, 1991;29:1387–1391.

    PubMed  CAS  Google Scholar 

  51. Gnann JW Jr, McCormick J, Mitchell S, et al. Synthetic peptide immunoassay distinguishes HIV type 1 and HIV type 2 infections. Science, 1987; 1346–1349.

    Google Scholar 

  52. Norrby E, Biberfeld G, Chiodi F, et al. Discrimination between antibodies to HIV and to related retroviruses using site-directed serology. Nature, 1987;339:248–250.

    Google Scholar 

  53. Baillou A, Brand D, Denis F, et al. High antigenic cross-reactivity of the V3 consensus sequences of HIV-1 gp120. AIDS Res Hum Retroviruses, 1994;9:1203–1209.

    Google Scholar 

  54. Turbica I, Simon F, Besnier JM, et al. Temporal development and prognostic value of the antibody response to the major neutralizing epitopes of gp120 during HIV-1 infection. J Med Virol, 1997;52:309–315.

    Article  PubMed  CAS  Google Scholar 

  55. Barin F, Lahbabi Y, Buzelay L, et al. Diversity of antibody binding to V3 peptides representing consensus sequences of HIV-1 genotypes A to E: an approach for HIV-1 serological subtyping. AIDS Res Hum Retroviruses, 1996;12:1279–1289.

    PubMed  CAS  Google Scholar 

  56. Cheingsong-Popov R, Osmanov S, Pau CP, et al. Serotyping of HIV-1 infections: definition, classification, relationship to viral genetic subtypes and assay evaluation. AIDS Res Hum Retroviruses, 1998;14:311–318.

    PubMed  CAS  Google Scholar 

  57. Sherefa K, Sönnenborg A, Steinbergs J, et al. Rapid grouping of HIV-1 infection in subtypes A to E by V3 peptide serotyping and its relation to sequence analysis. Biochem Biophys Res Commun, 1994; 205:1658–1664.

    Article  PubMed  CAS  Google Scholar 

  58. Hoelscher M, Hanker S, Barin F, et al. HIV-1 V3 serotyping in Tanzanian samples; probable reasons for mismatching with genetic subtyping. AIDS Res Hum Retroviruses, 1998;14:139–149.

    PubMed  CAS  Google Scholar 

  59. Plantier JC, Damond F, Lasky M, et al. V3 serotyping of human immunodeficiency virus type 1 infection: correlation with genotyping, limitations and identification of signature sequences. J Acquir Immune Defic Syndr, 1999;20:432–441.

    CAS  Google Scholar 

  60. Candotti D, Tareau C, Barin F, et al. Genetic subtyping and V3 serotyping of HIV type 1 isolates in Congo. AIDS Res Hum Retroviruses, 1999;15: 309–314.

    Article  PubMed  CAS  Google Scholar 

  61. Barin F, Couroucé AM, Pillonel J, et al. Increasing diversity of HIV-1M serotypes in French blood donors over a 10-year period (1985–1995). AIDS, 1997;11:1503–1508.

    PubMed  CAS  Google Scholar 

  62. Couturier E, Damond F, Roques P, et al. HIV-1 diversity in France, 1996–1998. AIDS, 2000;14:289–296.

    Article  PubMed  CAS  Google Scholar 

  63. Subbarao S, Luo CC, Limpakarnjanarat K, et al. Evaluation of oligonucleotide probes for the determination of the two major HIV-1 env subtypes in Thailand. AIDS, 1996;10:350–351.

    PubMed  CAS  Google Scholar 

  64. Van Harmelen J, Wood R, Lambrick M, et al. An association beween HIV-1 subtypes and mode of transmission in Cape Town, South Africa. AIDS, 1997;11:81–87.

    PubMed  Google Scholar 

  65. Bachmann MH, Delwar EL,, Shpaer EG, et al. Rapid genetic characterization of HIV type 1 strains from four World Health Organization sponsored vaccine evaluation sites using a heteroduplex mobility assay. WHO network for HIV isolation and characterization. AIDS Res Hum Retroviruses, 1994;10:1345–1353.

    PubMed  CAS  Google Scholar 

  66. Delwart E, Shpaer E, Louwagie J, et al. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science, 1993;262:1257–1261.

    PubMed  CAS  Google Scholar 

  67. Delwart E, Herring B, Rodrigo AG, et al. Genetic subtyping of human immunodeficiency virus using a heteroduplex mobility assay. PCR Methods Appl, 1995;4:S202–S216.

    PubMed  CAS  Google Scholar 

  68. Heyndrickx L, Janssens W, Zekeng L, et al. Simplified strategy for detection of recombinant human immunodeficiency virus type 1 group M isolates by gag/env heteroduplex mobility assay. J Virol, 2000;74:363–370.

    Article  PubMed  CAS  Google Scholar 

  69. Artenstein, AW, VanCott TC, Mascola JR, et al. Dual infection with human immunodeficiency virus type 1 of distinct envelope subtypes in humans. J Infect Dis, 1995;171:805–810.

    PubMed  CAS  Google Scholar 

  70. McCutchan FE, Hegerich PA, Brennan TP, et al. Genetic variants of HIV-1 in Thailand. AIDS Res Hum Retroviruses, 1992;8:1887–1895.

    PubMed  CAS  Google Scholar 

  71. Peeters M, Liegeois F, Bibollet-Ruche F, et al. Subtype-specific polymerase chain reaction for the identification of HIV-1 genetic subtypes circulating in Africa. AIDS, 1998;12:671–673.

    PubMed  CAS  Google Scholar 

  72. McCutchan FE, Sanders-Buell E, Oster CW, et al. Genetic comparison of human immunodeficiency virus HIV-1 isolates by polymerase chain reaction. J Acquir Immune Defic Syndr, 1991;4:1241–1250.

    PubMed  CAS  Google Scholar 

  73. Gaywee J, Artenstein AW, VanCott, TC, et al. Correlation of genetic and serologic approaches to HIV-1 subtyping in Thailand. J Acquir Immune Defic Syndr, 1996;13:392–396.

    CAS  Google Scholar 

  74. Porter KR, Mascola JR, Hupudio H, et al. Genetic, antigenic and serologic characterization of human immunodeficiency virus type 1 from Indonesia. J Acquir Immune Defic Syndr, 1997;14:1–6.

    CAS  Google Scholar 

  75. Luo CC, Downing, RG, Dela Torre N, et al. The development and evaluation of a probe hybridization method for subtyping HIV type 1 infection in Uganda. AIDS Res Hum Retroviruses, 1998;14:691–694.

    PubMed  CAS  Google Scholar 

  76. Rayfield, MA, Downing RG, Baggs J, et al. A molecular epidemiologic survey of HIV in Uganda. AIDS, 1998;12:521–527.

    Article  PubMed  CAS  Google Scholar 

  77. Subbarao S, Limpakarnjanarat K, Mastro TD, et al. HIV type 1 in Thailand, 1994–1995: persistence of two subtypes with low genetic diversity. AIDS Res Hum Retroviruses, 1998;14:319–327.

    PubMed  CAS  Google Scholar 

  78. Plantier JC, Vergne L, Damond F, et al. Feasibility of a molecular method using oligonucleotidic probe hybridization, for env genotyping of subtypes A through G of HIV-1 group M infection, with discrimination of the Circulating Recombinant Forms CRF01-AE and CRF02-AG. J Clin Microbiol, 2002;40:in press.

    Google Scholar 

  79. Kostrikis LG, Shin S, Ho DD, et al. Genotyping HIV-1 and HCV strains by a Combinatorial DNA Melting Assay (COMA). Mol Med, 1998;4:443–453.

    PubMed  CAS  Google Scholar 

  80. Robbins KE, Kostrikis LG, Brown TM, et al. Genetic analysis of human immunodeficiency virus type 1 strains in Kenya: a comparison using phylogenetic analysis and a combinatorial melting assay. AIDS Res Hum Retroviruses, 1999;15;329–335.

    Article  PubMed  CAS  Google Scholar 

  81. Janini LM, Pieniazek D, Peralta JM, et al. Identification of single and dual infections with distinct subtypes of human immunodeficiency virus type 1 by using restriction fragment length polymorphism analysis. Virus Gene, 1996;13:69–81.

    CAS  Google Scholar 

  82. Pieniazek D, Janini LM, Ramos A, et al. HIV-1 patients may harbor viruses of different phylogenetic subtypes: implications for the evolution of the HIV/AIDS pandemic. Emerg Infect Dis, 1995;1:86–88.

    Article  PubMed  CAS  Google Scholar 

  83. Ellenberger DL, Pieniazek D, Nkengasong, J, et al. Genetic analysis of human immunodeficiency virus in Abidjan, Ivory Coast reveals predominance of HIV type 1 subtype A and introduction of subtype G. AIDS Res Hum Retraviruses, 1999;15:3–9.

    CAS  Google Scholar 

  84. Nkengasong J, Luo CC, Abouya L, et al. Distribution of HIV type 1 subtypes among HIV-seropositive patients in the interior of Côte d’Ivoire. J Acquir Immune Defic Syndr, 2000;20;430–436.

    Google Scholar 

  85. Pinto ME, Tanuri A, Schechter M. Molecular and epidemiologic evidence for the discontinuous introduction of subtypes B and F into Rio de Janeiro, Brazil. J Acquir Immune Defic Syndr, 1998;19:310–312.

    CAS  Google Scholar 

  86. Flores I, Pieniazek D, Moran N, et al. HIV-1 subtype F in single and dual infections in Puerto-Rico: a potential sentinel site for monitoring novel genetic HIV variants in North America. Emerg Infect Dis, 1999;5:481–483.

    Article  PubMed  CAS  Google Scholar 

  87. Van Harmelen J, van der Ryst E, Wood R, et al. Restriction fragment length polymorphism analysis for rapid gag subtype determination of human immunodeficiency virus type 1 in South Africa. J Virol Methods, 1999;78:51–59.

    PubMed  Google Scholar 

  88. Thompson JD, Higgins D, Gibson TJ. CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994;22:4673–4680.

    PubMed  CAS  Google Scholar 

  89. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980;16:111–120.

    Article  PubMed  CAS  Google Scholar 

  90. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987;4:406–425.

    PubMed  CAS  Google Scholar 

  91. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985;39:783–791.

    Google Scholar 

  92. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c [computer program]: Seattle, WA: Department of Genetics, University of Washington; 1989.

    Google Scholar 

  93. Grassly NC, Holmes EC. A likelihood method for the detection of selection and recombination using nucleotide sequences. Mol Biol Evol, 1997;14;239–247.

    PubMed  CAS  Google Scholar 

  94. McGuire G, Wright F, Prentice MJ. A graphical method for detecting recombination in phylogenetic data sets. Mol Biol Evol, 1997;14:1125–1131.

    PubMed  CAS  Google Scholar 

  95. Weiller GF. Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol, 1998;15: 326–335

    PubMed  CAS  Google Scholar 

  96. Gao F, Robertson DL, Carruthers CD, et al. A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol, 1998;7:5680–5698.

    Google Scholar 

  97. Lole K, Bollinger R, Paranjape R, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C infected seroconverters in India, with evidence of intersubtype recombination. J Virol, 1999;73:142–160.

    Google Scholar 

  98. Siepel AC, Halpern AL, Macken C, et al. A computer program designed to screen rapidly for HIV type 1 intersubtype recombinant sequences. AIDS Res Hum Retroviruses, 1995;11:1413–1416.

    Article  PubMed  CAS  Google Scholar 

  99. Salminen MO, Carr J, Burke DS, et al. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses, 1995;11:1423–1425.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Barin, F.R., Toure-Kane, C., Plantier, JC., Peeters, M. (2002). Monitoring HIV-1 Subtype Distribution. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics