Skip to main content

HIV-1 Vaccine Testing, Trial Design, and Ethics

  • Chapter
AIDS in Africa
  • 228 Accesses

Conclusion

To minimize the time until practical and efficacious HIV-1 vaccines are widely distributed in Africa, it is important to continually conduct vaccine preparedness studies and standardized, comparative Phase I and II screening trials of multiple vaccines in many cohorts and geographic locations, and to move the most promising candidates rapidly into efficacy trials. Efficacy trials are needed to assess vaccine effects on susceptibility to HIV-1 infection, infectiousness, disease progression, and behavior, as well as to identify immune and viral correlates of vaccine protection. Since evaluations of vaccine efficacy on infectiousness and disease will rely to some degree on unvalidated surrogate markers such as viral load, it is important to follow HIV-1-infected participants long enough to observe clinical outcomes. Given the differences among populations in many factors including host and viral genetics and routes of exposure, it is also important to carry out multiple, parallel efficacy trials in several high-incidence regions and populations in Africa and elsewhere (67). The success of these trials should be judged not by demonstration of efficacy but by the contribution they make toward the identification of efficacious vaccines (29,123). The ethical validity of an HIV-1 vaccine trial will ultimately depend on the balance of risks and benefits of the proposed research and on its relevance to its intended population, including access to a vaccine that has been shown to be safe and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esparza J, Bhamarapravati N. Accelerating the development and future availability of HIV-1 vaccines: why, when, where, and how, Lancet, 2000; 355:2061–2066.

    Article  PubMed  CAS  Google Scholar 

  2. Gilbert PB. Some statistical issues in the design of HIV-1 vaccine and treatment trials. Stat Meth Med Res, 2000:9:207–229.

    Article  CAS  Google Scholar 

  3. Anonymous. Stages of vaccine development. In: Mitchell VS, Philipose NM, and Sanford JP, eds. The Children’s Vaccine Initiative Achieving the Vision. Washington DC: National Academy Press, 1993:109–127.

    Google Scholar 

  4. Gregersen JP. Vaccine development: The long road from initial idea to product licensure. In: Levine MM, Woodrow GC, Kaper JB, and Cobon GS, eds. New Generation Vaccines. New York: Marcel Dekker, Inc., 1997:1165–1177.

    Google Scholar 

  5. Folkers GK, Fauci AS. The role of US government agencies in vaccine research and development. Nat Med, 1998;4(Suppl):491–494.

    Article  PubMed  CAS  Google Scholar 

  6. Schultz AM, Hu SL. Primate models for HIV-1 vaccines. AIDS, 1993;7(Suppl 1):S161–S170.

    PubMed  Google Scholar 

  7. Li J, Lord CI, Haseltine W, et al. Infection of cynomolgus monkeys with a chimeric HIV-1/SIVmac virus that expresses the HIV-1 envelope glycoproteins. J Acquir Immune Defic Syndr, 1992;5:639–646.

    PubMed  CAS  Google Scholar 

  8. Almond N, Heeney JL. AIDS vaccine development in primate models. AIDS, 1998;12(Suppl A): S133–S140.

    PubMed  Google Scholar 

  9. Hulskotte EGJ, Geretti AM, Osterhaus AD. Towards an HIV-1 vaccine: lessons learned from studies in macaque models. Vaccine, 1998;16:904–915.

    Article  PubMed  CAS  Google Scholar 

  10. Heeney J, Akerblom L, Barnett S, et al. HIV-1 vaccine induced immune responses which correlate with protection from SHIV-1 infection: Compiled preclinical efficacy data from trials with 10 different HIV-1 vaccine candidates. Immunol Lett, 1999;66:189–195.

    Article  PubMed  CAS  Google Scholar 

  11. Mascola JR, Lewis MG, Stiegler G, et al. Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. JVirol, 1999;73: 4009–4018.

    CAS  Google Scholar 

  12. Barouch DH, Santra S, Schmitz JE, et al. Control of viremia and prevention of clinical AIDS in Rhesus monkeys by cytokine-augmented DNA vaccination. Science, 2000;290:486–492.

    Article  PubMed  CAS  Google Scholar 

  13. Mascola JR, Stiegler G, VanCott TC, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med, 2000;6:207–210.

    Article  PubMed  CAS  Google Scholar 

  14. Alter JH, Eichberg JW, Masur H, et al. Transmission of HTLV-III infection from human plasma to chimpanzees: an animal model for AIDS. Science, 1984:226:549–552.

    Article  PubMed  CAS  Google Scholar 

  15. Francis DP, Feorino PM, Broderson JR, et al. Infection of chimpanzees with lymphadenopathy associated virus. Lancet, 1984;11:1276–1277.

    Article  Google Scholar 

  16. Gadjusek DC, Amyx HL, Gibbs CR Jr, et al. Transmission experiments with human T-lymphotropic retroviruses and human AIDS tissue. Lancet, 1984;1:1415–1416.

    Google Scholar 

  17. Murthy KK, Cobb EK, Rouse SR, et al. Correlates of protective immunity against HIV-1 infection in immunized chimpanzees. Immunol Lett, 1996; 51:121–124.

    Article  PubMed  CAS  Google Scholar 

  18. Murthy KK, Cobb EK, Rouse SR, et al. Active and passive immunization against HIV type 1 infection in chimpanzees. AIDS Res Hum Retroviruses, 1998;14(Suppl 3):S271–S276.

    PubMed  CAS  Google Scholar 

  19. Graham BS, Sawyer LA, Walker MC, et al. Interface between animal models and clinical Phase I trials workshop: Conference summary. AIDS Res Hum Retroviruses, 1995;11:1305–1306.

    Google Scholar 

  20. Rida W, Meier P, Stevens C. Design and implementation of HIV vaccine efficacy trials: a working group summary. AIDS Res Hum Retroviruses, 1993;9:S59–S63.

    Google Scholar 

  21. Hirsch VM, Goldstein S, Hynes NA, et al. Prolonged clinical latency and survival of macaques given a whole inactivated simian immunodeficiency virus vaccine. J Infect Dis, 1994; 170: 51–59.

    PubMed  CAS  Google Scholar 

  22. Graham BS, Karzon DT. AIDS vaccine development. In: Merigan TC Jr., Bartlett JG, Bolognesi D, eds. Textbook of AIDS Medicine, Second Edition. Baltimore: Williams and Wilkins, 1998:689–724.

    Google Scholar 

  23. Offit PA. Rotaviruses: Immunological determinants of protection against infection and disease. Adv Virus Res, 1994;44:161–202.

    Article  PubMed  CAS  Google Scholar 

  24. Corey L, Ashley R, Sekulovich R, et al. Lack of efficacy of a vaccine containing recombinant gD2 and gB2 antigens in MF59 adjuvant for the prevention of genital HSV-2 acquisition. In: 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997; Toronto. LB-28.

    Google Scholar 

  25. Clements-Mann ML. Lessons for AIDS vaccine development from non-AIDS vaccines. AIDS Res Hum Retroviruses, 1998;14(Suppl 3):S197–S203.

    PubMed  Google Scholar 

  26. Fast PE, Walker MC. Human trials of experimental AIDS vaccines. AIDS, 1993;7(Suppl 1):S147–S159.

    PubMed  Google Scholar 

  27. Belshe RB, Clements ML, Keefer MC, et al. Interpreting serodiagnostic test results in the 1990s: social risks of HIV vaccine studies in uninfected volunteers. Ann Intern Med, 1994;121:584–589.

    PubMed  CAS  Google Scholar 

  28. Karzon DT. Preventive vaccines. In: Broder S, Merigan TC Jr, Bolognesi D, eds. Textbook of AIDS medicine. Baltimore: Williams and Wilkins, 1994: 667–692.

    Google Scholar 

  29. International AIDS Vaccine Initiative. Scientific blueprint 2000: Accelerating global efforts in AIDS vaccine development. July, 2000. Available at: www.iavi.org. Accessed: February 2, 2002.

    Google Scholar 

  30. Dolin R, Graham BS, Greenberg SB, et al. The safety and immunogenicity of a human immunodeficiency virus type 1 (HIV-1) recombinant gp160 candidate vaccine in humans: NIAID AIDS Vaccine Clinical Trials Network. Ann Intern Med, 1991;114:119–127.

    PubMed  CAS  Google Scholar 

  31. Schwartz DH, Gorse G, Clements ML, et al. Induction of HIV-1-neutralising and syncytium-inhibiting antibodies in uninfected recipients of HIV-1IIIB rgp120 subunit vaccine. Lancet, 1993;342:69–73.

    Article  PubMed  CAS  Google Scholar 

  32. Berman PW. Development of bivalent rgp120 vaccines to prevent HIV type 1 infection. AIDS Res Hum Retroviruses, 1998;14(Suppl 3):S277–S289.

    PubMed  CAS  Google Scholar 

  33. Berman PW, Huang W, Riddle L, et al. Development of bivalent (B/E) vaccines able to neutralize CCR5-dependent viruses from the United States and Thailand. Virology, 1999;265:1–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kahn JO, Sinangil F, Baenziger J, et al. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 1 (SF2) gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J Infect Dis, 1994;170:1288–1291.

    PubMed  CAS  Google Scholar 

  35. Belshe RB, Graham BS, Keefer MC, et al. Neutralizing antibodies to HIV-1 in seronegative volunteers immunized with recombinant gp120 from the MN strain of HIV-1: NIAID AIDS Vaccine Clinical Trials Network. JAMA, 1994;272:475–480.

    Article  PubMed  CAS  Google Scholar 

  36. Keefer MC, Graham BS, Belshe RB, et al. Studies of high doses of a human immunodeficiency virus type 1 recombinant glycoprotein 160 candidate vaccine in HIV type 1-seronegative humans. AIDS Res Hum Retroviruses, 1994;10:1713–1723.

    PubMed  CAS  Google Scholar 

  37. Keefer MC, Graham BS, McElrath MJ, et al. Safety and immunogenicity of Env 2–3, a human immunodeficiency virus type 1 candidate vaccine, in combination with a novel adjuvant, MTP-PE/MF59. AIDS Res Hum Retroviruses, 1996;12:683–693.

    PubMed  CAS  Google Scholar 

  38. Kovacs JA, Vasudevachari MB, Easter M, et al. Induction of humoral and cell-mediated anti-human immunodeficiency virus (HIV) responses in HIV sero-negative volunteers by immunization with recombinant gp160. J Clin Invest, 1993;92:919–928.

    Article  PubMed  CAS  Google Scholar 

  39. Gorse GJ, Rogers JH, Perry JE, et al. HIV-1 recombinant gp160 vaccine induced antibodies in serum and saliva. Vaccine, 1995;13:209–214.

    Article  PubMed  CAS  Google Scholar 

  40. Corey L, McElrath J, Weinhold K, et al. Cytotoxic T cell and neutralizing antibody responses to human immunodeficiency virus type 1 envelope with a combination vaccine regimen. J Infect Dis, 1998;177:301–309.

    PubMed  CAS  Google Scholar 

  41. Gorse GJ, McElrath MJ, Matthews TJ, et al. Modulation of immunologic responses to HIV-1 MN recombinant gp 160 vaccine by dose and schedule of administration. Vaccine, 1998;16:493–506.

    Article  PubMed  CAS  Google Scholar 

  42. Salmon-Ceron D, Excler JL, Sicard D, et al. Safety and immunogenicity of a recombinant HIV type 1 glycoprotein 160 boosted by a V3 synthetic peptide in HIV-negative volunteers. AIDS Res Hum Retroviruses, 1995;11:1479–1486.

    PubMed  CAS  Google Scholar 

  43. Wintsch J, Chaignat CL, Braun DG, et al. Safety and immunogenicity of a genetically engineered human immunodeficiency virus vaccine. J Infect Dis, 1991;163:219–225.

    PubMed  CAS  Google Scholar 

  44. Sarin PS, Mora CA, Naylor PH, et al. HIV-1 p17 synthetic peptide vaccine HGP-30: induction of immune response in human subjects and preliminary evidence of protection against HIV challenge in SCID mice. Cell Mol Biol, 1995;41:401–407.

    PubMed  CAS  Google Scholar 

  45. Kahn JO, Stites DP, Siliciano J, et al. A phase I study of HGP-30, a 30 amino acid subunit of the human immunodeficiency virus (HIV) p17 synthetic peptide analogue sub-unit vaccine in seronegative subjects. AIDS Res Hum Retroviruses, 1992;8:1321–1325.

    PubMed  CAS  Google Scholar 

  46. Naylor PH, Sztein MB, Wada S, et al. Preclinical and clinical studies on immunogenicity and safety of the HIV-1 p17-based synthetic peptide AIDS vaccine: HGP-30-KLH. Int J Immunopharmacol, 1991;13(Suppl 1): 117–127.

    Article  PubMed  CAS  Google Scholar 

  47. Gorse GJ, Keefer MC, Belshe RB, et al. A doseranging study of a prototype synthetic HIV-1 MN V3 branched peptide vaccine. J Infect Dis, 1996;173:330–339.

    PubMed  CAS  Google Scholar 

  48. Li D, Forrest BD, Li Z, et al. International clinical trials of HIV vaccines. II. Phase I trial of an HIV-1 synthetic peptide vaccine evaluating an accelerated immunization schedule in Yunnan, China. Asian Pac J Allergy Immunol, 1997;15:105–113.

    PubMed  CAS  Google Scholar 

  49. Kelleher AD, Emery S, Cunningham P, et al. Safety and immunogenicity of UBI HIV-1 (MN) octameric V3 peptide vaccine administered by subcutaneous injection. AIDS Res Hum Retroviruses, 1997;13:29–32.

    PubMed  CAS  Google Scholar 

  50. Phanuphak P, Teeratakulpixrn S, Sarangbin S, et al. International clinical trials of HIV vaccines. I. Phase I trial of an HIV-1 synthetic peptide vaccine in Bangkok, Thailand. Asian Pac J Allergy Immunol, 1997;15:41–48.

    PubMed  CAS  Google Scholar 

  51. Rubinstein A, Goldstein H, Pettoello-Mantovani M, et al. Safety and immunogenicity of a V3 loop synthetic peptide conjugated to purified protein derivative in HIV-seronegative volunteers. AIDS, 1995; 9:243–251.

    Article  PubMed  CAS  Google Scholar 

  52. Pialoux G, Excler JL, Riviere Y, et al. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). AIDS Res Hum Retroviruses, 1995;11:373–381.

    PubMed  CAS  Google Scholar 

  53. Fleury B, Janvier G, Pialoux G, et al. Memory cytotoxic T lymphocyte responses in human immunodeficiency virus type 1 (HIV-1)-negative volunteers immunized with a recombinant canarypox expressing gp160 of HIV-1 and boosted with a recombinant gp160. J Infect Dis, 1996;174:734–738.

    PubMed  CAS  Google Scholar 

  54. Clements-Mann ML, Weinhold K, Matthews TJ, et al. Immune responses to human immunodeficiency virus (HIV) type 1 induced by canarypox expressing HIV-1 MNgp120, HIV-1 SF-2recombinant gp120, or both vaccines in seronegative adults. J Infect Dis, 1998;177:1230–1246.

    PubMed  CAS  Google Scholar 

  55. Graham BS, Matthews TJ, Belshe RB, et al. Augmentation of human immunodeficiency virus type 1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia-naive adults: the NIAID AIDS Vaccine Clinical Trials Network. J Infect Dis, 1993;167:533–537.

    PubMed  CAS  Google Scholar 

  56. Zagury D, Bernard J, Cheynier R, et al. A group specific anamnestic immune reaction a gainst HIV-1 induced by a candidate vaccine against AIDS. Nature, 1988;332:728–731.

    Article  PubMed  CAS  Google Scholar 

  57. Cooney EL, Collier AC, Greenberg PD, et al. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet, 1991;337:567–572.

    Article  PubMed  CAS  Google Scholar 

  58. Cooney EL, McElrath MJ, Corey L, et al. Enhanced immunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV envelope and boosting with gp160 protein. Proc Natl Acad Sci USA, 1993;90:1882–1886.

    Article  PubMed  CAS  Google Scholar 

  59. Graham BS, Belshe RB, Clements ML, et al. Vaccination of vaccinia-naive adults with human immunodeficiency virus type 1 gp 160 recombinant vaccinia virus in a blinded, controlled, randomized clinical trial: the AIDS Vaccine Clinical Trials Network. J Infect Dis, 1993;166:244–252.

    Google Scholar 

  60. Graham BS, Gorse GJ, Schwartz DH, et al. Determinants of antibody response after recombinant gp160 boosting in vaccinia-naive volunteers primed with gp160-recombinant vaccinia virus. J Infect Dis, 1994;170:782–786.

    PubMed  CAS  Google Scholar 

  61. Stanhope PE, Clements ML, Siliciano RF. Human CD4+ cytolytic T lymphocyte responses to a human immunodeficiency virus type 1 gp160 subunit vaccine. J Infect Dis, 1993;168:92–100.

    PubMed  CAS  Google Scholar 

  62. Evans TG, Keefer MC, Weinhold KJ, et al. A canarypox vaccine expressing multiple human immunodeficiency virus type 1 genes given alone or with rgp120 elicits broad and durable CD8+ cytotoxic T lymphocyte responses in seronegative volunteers. J Infect Dis, 1999;180:290–298.

    Article  PubMed  CAS  Google Scholar 

  63. Francis DP, Gregory T, McElrath MJ, et al. Advancing AIDSVAX to phase 3: safety, immunogenicity, and plans for phase 3. AIDS Res Hum Retroviruses, 1998;14(Suppl 3):S325–S331.

    PubMed  Google Scholar 

  64. McElrath JM, Corey L, Montefiori D, et al. A Phase II study of two HIV type 1 envelope vaccines, comparing their immunogenicity in populations at risk for acquiring HIV type 1 infection. AIDS Res Hum Retroviruses, 2000;16:907–919.

    Article  PubMed  CAS  Google Scholar 

  65. Nitayaphan S, Khamboonruang C, Sirisophana N, et al. A phase I/II trial of HIV SF2 gp120/MF59 vaccine in seronegative Thais. AFRIMS-RIHES Vaccine Evaluation Group. Armed Forces Research Institute of Medical Sciences and the Research Institute for Health Sciences. Vaccine, 2000;18:1448–1455.

    Article  PubMed  CAS  Google Scholar 

  66. Belshe RB, Stevens C, Gorse GJ, et al. Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus type 1 vaccine with or without gp120: a phase 2 study in higher-and lowerrisk volunteers. J Infect Dis, 2001;183:1343–1352.

    Article  PubMed  CAS  Google Scholar 

  67. Clements ML, Clinical trials of human immunodeficiency virus vaccines. In: DeVita VT Jr., Hellman S, Rosenberg SA, eds. AIDS, Etiology, Diagnosis, Treatment and Prevention, Fourth ed, New York: Lippincott-Raven, 1997:617–626.

    Google Scholar 

  68. Berman PW, Murthy KK, Wrin T, et al. Protection of MN-rgp120 immunized chimpanzees from heterologous infection with a primary isolate of human immunodeficiency virus type 1. J Infect Dis, 1996;173:52–59.

    PubMed  CAS  Google Scholar 

  69. Esparza J, Osmanov S, Kallings LO, et al. Planning for HIV vaccine trials: the World Health Organization perspective. AIDS, 1991;5:S159.

    Article  PubMed  Google Scholar 

  70. Hoff R. Preparations of HIV vaccine trials: Moving from baseline studies to efficacy trials. AIDS Res Hum Retroviruses, 1994;10:S191–S193.

    PubMed  Google Scholar 

  71. Hoth DF, Bolognesi DP, Corey L, et al. HIV vaccine development: A progress report. Ann Intern Med, 1994;121:603.

    PubMed  CAS  Google Scholar 

  72. Sheon AR. Overview: HIV vaccine feasibility studies. AIDS Res Hum Retroviruses, 1994;10(Suppl 2):S195–S196.

    PubMed  Google Scholar 

  73. Temoshok LR. Behavioral research contributions to planning and conducting HIV vaccine efficacy studies. AIDS Res Hum Retroviruses, 1994;10(Suppl 2):S277–S280.

    PubMed  Google Scholar 

  74. Vermund SH, Schultz AM, Hoff R. Prevention of HIV with vaccines. Curr Opin Infect Dis, 1994;7:82–94.

    Article  Google Scholar 

  75. Hoff R, Lawrence DN. Preparation for HIV vaccine efficacy trials. Antibiot Chemother, 1996;48: 155–160.

    PubMed  CAS  Google Scholar 

  76. Koblin BA, Heagerty P, Sheon A, et al. Readiness of high-risk populations in the HIV Network for Prevention Trials to participate in HIV vaccine efficacy trials in the United States. AIDS, 1998;12:785–793.

    Article  PubMed  CAS  Google Scholar 

  77. Hayes R. Design of human immunodeficiency virus intervention trials in developing countries. J R Stat Soc [Ser A], 1998;161 (Part 2):251–263.

    Article  Google Scholar 

  78. Smith PG, Rodrigues LC, Fine PEM. Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. Int J Epidemiol, 1984;13:87–93.

    Article  PubMed  CAS  Google Scholar 

  79. Hoff R, Barker LF. Trial objectives and end points for measuring the efficacy of HIV vaccines. Infect Agents Dis, 1995;4:95–101.

    PubMed  CAS  Google Scholar 

  80. Rida WN, Lawrence DL. Prophylactic HIV vaccine trials. In: Finkelstein DM, Schoenfeld DA, eds. AIDS clinical trials; Guidelines for design and analysis. New York: Wiley-Liss, 1995:319–348.

    Google Scholar 

  81. Anderson RM, Garnett GP. Low-efficacy HIV vaccines; potential for community-based intervention programmes. Lancet, 1996;348:1010–1013.

    Article  PubMed  CAS  Google Scholar 

  82. Keefer MC, Belshe R, Graham B, et al. Phase I/II trials of preventive HIV vaccine candidates. Safety profile of HIV vaccination: first 1000 volunteers of the AIDS Vaccine Evaluation Group. AIDS Res Hum Retroviruses, 1994;10:S139.

    PubMed  Google Scholar 

  83. DeMets DL, Fleming TR, Whitley RJ, et al. The Data and Safety Monitoring Board and Acquired Immune Deficiency Syndrome (AIDS) clinical trials. Cont Clin Trials, 1995;16:408–421.

    Article  CAS  Google Scholar 

  84. Robinson WE, Montefiori DC, Mitchell WM. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet, 1988;1:790–794.

    Article  PubMed  Google Scholar 

  85. Matsuda S, Gidlund M, Chiodi F, et al. Enhancement of human immunodeficiency virus (HIV) replication in human monocytes by low titres of anti-HIV antibodies in vitro. Scand J Immunol, 1989;30:425–434.

    Article  PubMed  CAS  Google Scholar 

  86. Takeda A, Tuazon CU, Ennis FA. Antibodyenhanced infection by HIV-1 via Fc receptor-mediated entry. Science, 1989;242:580–583.

    Article  Google Scholar 

  87. Homsy J, Meyer M, Levy JA. Serum enhancement of human immunodeficiency virus (HIV) infection correlates with disease in HIV-infected individuals. J Virol, 1990;64:1437–1440.

    PubMed  CAS  Google Scholar 

  88. Tremblay M, Meloche S, Sekaly RP, et al. Complement receptor 2 mediates enhancement of HIV-1 infection in Epstein-Barr virus-carrying B cells. J Exper Med, 1990;171:1791–1796.

    Article  CAS  Google Scholar 

  89. Montefiori DC, Lefkowitz LB Jr, Keller RE, et al. Absence of a clinical correlation for complementmediated, infection-enhancing antibodies in plasma or sera from HIV-1-infected individuals. AIDS, 1991;5:413–417.

    Article  Google Scholar 

  90. Burke DS. Human HIV vaccine trials: Does antibody-dependent enhancement pose a genuine risk? Perspect Biol Med, 1992;35:511–530.

    PubMed  CAS  Google Scholar 

  91. Mascola JR, Mathieson BJ, Zack PM, et al. Summary report: workshop on the potential risks of antibodydependent enhancement in human HIV vaccine trials. AIDS Res Human Retroviruses, 1993;9:1175–1184.

    CAS  Google Scholar 

  92. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika, 1982;69:239–241.

    Article  Google Scholar 

  93. Durham LK, Longini IM, Halloran ME, et al. Estimation of vaccine efficacy in the presence of waning: application to cholera vaccines. Am J Epidemiol, 1998;147:948–959.

    PubMed  CAS  Google Scholar 

  94. Fine P. Herd immunity: History, theory, practice. Epidemiol Rev, 1993;15:265–302.

    PubMed  CAS  Google Scholar 

  95. Murphy BR, Chanock RM. Immunization against virus disease. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE, eds. Fields Virology. Philadelphia: Lippincott-Raven, 1996:467–497.

    Google Scholar 

  96. Clemens JD, Naficy A, Rao MR. Long-term evaluation of vaccine protection: Methodological issues for phase 3 trials and phase 4 studies. In: Levine MM, Woodrow GC, Kaper JB, Cobon GS, eds. New Generation Vaccines. New York: Marcel Dekker, Inc., 1997:47–67.

    Google Scholar 

  97. Halloran ME, Struchiner CJ, Longini IM. Study designs for evaluating different efficacy and effectiveness aspects of vaccines. Am J Epidemiol, 1997;146:789–803.

    PubMed  CAS  Google Scholar 

  98. Shen X, Siliciano RF. AIDS: Preventing AIDS but not HIV-1 infection with a DNA vaccine. Science, 2000;290:463–465.

    Article  PubMed  CAS  Google Scholar 

  99. Warren JT, Levinson MA, AIDS preclinical vaccine development: biennial survey of HIV, SIV, and SHIV challenge studies in vaccinated nonhuman primates. J Med Primatol, 1999;28:249–273.

    PubMed  CAS  Google Scholar 

  100. O’Brien TR, Blattner WA, Waters D, et al. Serum HIV-1 RNA levels and time to development of AIDS in the Multicenter Hemophilia Cohort Study. JAMA, 1996;276:105–110.

    Google Scholar 

  101. Mellors JW, Rinaldo CR Jr., Gupta P, et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science, 1996;272:1167–1170.

    Article  PubMed  CAS  Google Scholar 

  102. Mellors JW, Munoz A, Giorgi JV, et al. Plasma viral load and CD4 + lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med, 1997; 126:946–954.

    PubMed  CAS  Google Scholar 

  103. Prentice RL. Surrogate endpoints in clinical trials: Definition and operational criteria. Stat Med, 1989;8:431–440.

    Article  PubMed  CAS  Google Scholar 

  104. Fleming TR. Evaluation of active control trials in AIDS.JAIDS, 1990;3:S82–S87.

    Google Scholar 

  105. Fleming TR. Evaluating therapeutic interventions (with Discussion and Rejoinder). Stat Science, 1992;7:428–456.

    Article  Google Scholar 

  106. Fleming TR, DeMets DL. Surrogate endpoints in clinical trials: Are we being misled? Ann Intern Med, 1996;125:605–613.

    PubMed  CAS  Google Scholar 

  107. Effects of encainide, flecainide, imipramine and moricizine on ventricular arrhythmias during the year after acute myocardial infarction: the CAPS. The Cardiac Arrhythmia Pilot Study (CAPS) Investigators. Am J Cardiol, 1988;61:501–509.

    Google Scholar 

  108. Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocaridial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med, 1989;321:406–412.

    Google Scholar 

  109. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group, N Engl J Med, 1991;324:509–516.

    Google Scholar 

  110. Choi S, Lagakos SW, Schooley TT, et al. CD4+ lymphocytes are an incomplete surrogate marker for clinical progression in persons with asymptomatic HIV-1 infection taking zidovudine. Ann Intern Med, 1993;118:674–680.

    PubMed  CAS  Google Scholar 

  111. DeGruttola V, Wulfsohn M, Fischl M, et al. Modeling the relationship between survival and CD4+ lymphocytes in patients with AIDS and AIDS-related complex. J Acquir Immune Defic Syndr, 1993;6:359–365.

    CAS  Google Scholar 

  112. Lin DY, Fischl MA, Schoenfeld DA. Evaluating the role of CD4-lymphocyte counts as surrogate endpoints in HIV-1 clinical trials. Stat Med, 1993;12:835–842.

    Article  PubMed  CAS  Google Scholar 

  113. Fleming TR. Surrogate markers in AIDS and cancer trials. Stat Med, 1994;13:1423–1435.

    Article  PubMed  CAS  Google Scholar 

  114. Hughes MD, Daniels MJ, Fischl MA, et al. CD4 cell count as a surrogate endpoint in HIV-1 clinical trials: A meta-analysis of studies of the AIDS Clinical Trials Group. AIDS, 1998;12:1823–1832.

    Article  PubMed  CAS  Google Scholar 

  115. HIV Surrogate Marker Collaborative Group. Human immunodeficiency virus type 1 RNA level and CD4 count as prognostic markers and surrogate endpoints: A meta-analysis. AIDS Res Hum Retroviruses, 2000;16:1123–1133.

    Article  Google Scholar 

  116. Carpenter CC, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV-1 infection in 1998: updated recommendations of the International AIDS Society-USA Panel. JAMA, 1998;28:78–86.

    Article  Google Scholar 

  117. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. MMWR, 1998;47(RR-4):1–43.

    Google Scholar 

  118. Halloran ME, Struchiner CJ. Study designs for dependent happenings. Epidemiology, 1991;2:331–338.

    Article  PubMed  CAS  Google Scholar 

  119. Longini IM, Susmita D, Halloran ME. Measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV-1 vaccines. J Acquir Immune Defic Syndr and Hum Retrovirology, 1996;13:440–447.

    CAS  Google Scholar 

  120. Donner A, Birkett N, Buck C. Randomization by cluster: sample size requirements and analysis. Am J Epidemiol, 1981;114:906–914.

    PubMed  CAS  Google Scholar 

  121. Quinn TC, Wawer MJ, Sewankambo N, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. New Engl J Med, 2000;342:921–929.

    Article  PubMed  CAS  Google Scholar 

  122. Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc, 1999;94:1096–1146.

    Article  Google Scholar 

  123. Rida W, Fast P, Hoff R, et al. Intermediate-sized trials for the evaluation of HIV vaccine candidates: a workshop summary. J Acquir Immune Defic Syndr, 1997;16:195–203.

    CAS  Google Scholar 

  124. Schaper C, Fleming T, Self S, et al. Statistical issues in the design of HIV-1 vaccine trials. Ann Rev Pub Health, 1995;16:1–22.

    Article  CAS  Google Scholar 

  125. Dolin R. Human studies in the development of human immunodeficiency virus vaccines. J Infect Dis, 1995;172:1175–1183.

    PubMed  CAS  Google Scholar 

  126. Carruth LM, Greten TF, Murray CE, et al. An algorithm for evaluating human cytotoxic T lymphocyte responses to candidate AIDS vaccines. AIDS Res Hum Retroviruses, 1999;15:1021–1034.

    Article  PubMed  CAS  Google Scholar 

  127. Renjifo B, Chaplin B, Mwakagile D, et al. Epidemic expansion of HIV type 1 subtype C and recombinant genotypes in Tanzania. AIDS Res Hum Retroviruses, 1998;14:635–638.

    Article  PubMed  CAS  Google Scholar 

  128. Renjifo B, Gilbert P, Chaplin B, et al. Emerging recombinant human immunodeficiency viruses: uneven representation of the envelope V3 region. AIDS, 1999;13:1613–1621.

    Article  PubMed  CAS  Google Scholar 

  129. Novitsky V, Rybak N, McLane MF, et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nefspecific Elispot-based CTL responses for AIDS vaccine design. J Virol, 2001;75:9210–9228.

    Article  PubMed  CAS  Google Scholar 

  130. Berman PW, Gray A, Wrin T, et al. Genetic and immunologic characterization of viruses infecting MN-rgp120-vaccinated volunteers. J Infect Dis, 1997;176:384–397.

    PubMed  CAS  Google Scholar 

  131. Graham BS, McElrath MJ, Connor RI, et al. Analysis of intercurrent HIV-1 infections in phase I and II trials of candidate AIDS vaccines. J Infect Dis, 1998;177:310–319.

    Article  PubMed  CAS  Google Scholar 

  132. Connor RI, Korber BTM, Graham BS, et al. Immunological and virological analyses of persons infected by human immunodeficiency virus type 1 while participating in trials of recombinant gp120 subunit vaccines. J Virol, 1998;72:1552–1576.

    PubMed  CAS  Google Scholar 

  133. Kilbourne ED, Chanock RM, Coppin PW, et al. Influenza vaccines: Summary of influenza workshop V. J Infect Dis, 1974;129:750–771.

    Google Scholar 

  134. Clements ML, Belts RF, Tierney EL, et al. Serum and nasal wash antibodies associated with resistance to experimental challenge with influenza A wildtype virus. J Clin Microbiol, 1986;24:157–160.

    PubMed  CAS  Google Scholar 

  135. Edwards KM, Dupont WD, Westrich MK, et al. A randomized controlled trial of cold-adapted and inactivated vaccines for the prevention of influenza A disease. J Infect Dis, 1994;169:68–76.

    PubMed  CAS  Google Scholar 

  136. Levine MM. Typhoid fever vaccines. In: Plotkin SA, Mortimer EA Jr., eds. Vaccines, Second Edition. Philadelphia: WB Saunders Company, 1994:597–633.

    Google Scholar 

  137. Gilbert PB, Self SG, Ashby MA. Statistical methods for assessing differential vaccine protection against human immunodeficiency virus types. Biometrics, 1998;54:799–814.

    Article  PubMed  CAS  Google Scholar 

  138. Breiman L, Friedman JH, Olshen RA, et al. Classification and regression trees. London: Wadsworth, 1984.

    Google Scholar 

  139. Zhang H, Singer B. Recursive partitioning in the health sciences. New York: Springer-Verlag, 1999.

    Google Scholar 

  140. Sugaya N, Nerome K, Ishida M, et al. Efficacy of inactivated vaccine in preventing antigenically drifted influenza type A and well-matched type B. JAMA, 1994;272:1122–1126.

    Article  PubMed  CAS  Google Scholar 

  141. Guenter D, Esparza J, Macklin R. Ethical consideration in international HIV vaccine trials: summary of a consultative process conducted by the Joint United Nations Programme on HIV/AIDS. J Med Ethics, 2000;26:37–43.

    Article  PubMed  CAS  Google Scholar 

  142. UNAIDS: Ethical considerations in HIV-1 preventive vaccine research. Geneva: UNAIDS, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gilbert, P.B., Esparza, J. (2002). HIV-1 Vaccine Testing, Trial Design, and Ethics. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_40

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics