Skip to main content

Effect of Genetic Variation on HIV Transmission and Progression to AIDS

  • Chapter
AIDS in Africa

Conclusion

The identification of genetic factors that regulate HIV-1 infection and AIDS kinetics has clarified our view of viral pathogenesis by illuminating the importance of host-virus interactions at virtually every stage of infection. Genetic studies often point to unexpected roles for host factors, providing insights into immune regulation of HIV-1 replication and possible selective forces that may influence HIV-1 quasispecies evolution. Host genetic factors have been shown to affect susceptibility to infection, the rate of CD4 + T-cell depletion, and the rate of progression to AIDS. Thus, it is important to consider the genetic background of the host when assessing the efficacy of antiretroviral agents and vaccines in clinical trials.

Unfortunately, as a consequence of inadequate funding, political barriers, and lack of resolve for confronting diseases in developing nations, there are far too few natural history cohort studies conducted in Africa. Many of the ones that are available have been established late in the epidemic, thus limiting their prospective longitudinal component. Human populations are evolving under varying selective pressures including infectious agents. Genetic variants that have a selective advantage in one situation sometimes have a selective disadvantage in others. Over time, selective pressures and genetic drift cause allele frequencies and haplotype structures to differ among populations. A definition of genetic factors influencing HIV-1 infection, pathogenesis, and rate of progression in individuals in Africa and Asia is essential to understanding geographic differences in HIV-1 epidemic dynamics and the interaction between host genetic factors, specific viral subtypes, and other environmental correlates of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. JVirol, 1992;66:1354–1360.

    CAS  Google Scholar 

  2. Connor RI, Sheridan KE, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med, 1997;185:621–628.

    Article  PubMed  CAS  Google Scholar 

  3. Kanki PJ, Hamel DJ, Sankale JL, et al. Human immunodeficiency virus type 1 subtypes differ in disease progression. J Infect Dis, 1999;179:68–73.

    Article  PubMed  CAS  Google Scholar 

  4. Morgan D, Maude GH, Malamba SS, et al. HIV-1 disease progression and AIDS-defining disorders in rural Uganda. Lancet, 1997;350:245–250.

    Article  PubMed  CAS  Google Scholar 

  5. Dean M, Jacobson LP, McFarlane G, et al. Reduced risk of AIDS lymphoma in individuals heterozygous for the CCR5-delta32 mutation. Cancer Res, 1999;59:3561–3564.

    PubMed  CAS  Google Scholar 

  6. Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science, 1996;273:1856–1862.

    Article  PubMed  CAS  Google Scholar 

  7. Smith MW, Dean M, Carrington M, et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science, 1997;277:959–965.

    Article  PubMed  CAS  Google Scholar 

  8. Winkler C, Modi W, Smith MW, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science, 1998;279:389–393.

    Article  PubMed  CAS  Google Scholar 

  9. McDermott DH, Beecroft MJ, Kleeberger CA, et al. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS, 2000;14:2671–2678.

    Article  PubMed  CAS  Google Scholar 

  10. McDermott DH, Zimmerman PA, Guignard F, et al. CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet, 1998;352:866–870.

    Article  PubMed  CAS  Google Scholar 

  11. Mummidi S, Ahuja SS, Gonzalez E, et al. Gene-alogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med, 1998;4:786–793.

    Article  PubMed  CAS  Google Scholar 

  12. Martin MP, Dean M, Smith MW, et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science, 1998;282:1907–1911.

    Article  PubMed  CAS  Google Scholar 

  13. Carrington M, Nelson GW, Martin MP, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science, 1999;283:1748–1752.

    Article  PubMed  CAS  Google Scholar 

  14. Liu H, Chao D, Nakayama EE, et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci USA, 1999;96:4581–4585.

    Article  PubMed  CAS  Google Scholar 

  15. Shin HD, Winkler C, Stephens JC, et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA, 2000;97:14467–14472.

    Article  PubMed  CAS  Google Scholar 

  16. O’Brien SJ, Dean M, Smith M, et al. The Human Genes that Limit AIDS. In: Boulyjenkov V Berg K, Christen Y, eds. Genes and Resistance to Diseases. 1st ed. Berlin Heidelberg: Springer-Verlag, 2000:9–17.

    Google Scholar 

  17. O’Brien SJ, Nelson GW, Winkler CA, et al. Polygenic and multifactorial disease gene association in man: Lessons from AIDS. Annu Rev Genet, 2000:34:563–591.

    Google Scholar 

  18. O’Brien SJ, Moore J. The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol Rev, 2000;177:99–111

    Google Scholar 

  19. Kaslow RA, Ostrow DG, Detels R, et al. The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. Am J Epidemiol, 1987;126:310–318.

    PubMed  CAS  Google Scholar 

  20. Goedert JJ, Kessler CM, Aledort LM, et al. A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia. N Engl J Med, 1989;321:1141–1148.

    Article  PubMed  CAS  Google Scholar 

  21. Pisani E, Schwartlander B, Cherney S, et al. Report on the global HIV/AIDS epidemic. Geneva: Joint United Nations Programme on AIDS, June 2000.

    Google Scholar 

  22. Burke D, McCutchan F. Global distribution of human immunodeficiency virus-1 clades. In: De Vita J, Hellman S, Rosenberg S, eds. AIDS:. Biology, Diagnosis, Treatment and Prevention. Philadelphia: Lipincott-Raven, 1997:119–126.

    Google Scholar 

  23. Myers G, Korber B, Hahn B. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos, New Mexico: Los Alamos National Laboratory, Theoretical Biology and Biophysics Group, 1995.

    Google Scholar 

  24. Su B, Sun G, Lu D, et al. Distribution of three HIV-1 resistance-conferring polymorphisms (SDF1-3’A, CCR2-64I, and CCR5-Delta32) in global populations. Eur J Hum Genet, 2000;8:975–979.

    Article  PubMed  CAS  Google Scholar 

  25. Stephens JC, Reich DE, Goldstein DB, et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum. Genet, 1998;62:1507–1515.

    Article  PubMed  CAS  Google Scholar 

  26. Martinson JJ, Chapman NH, Rees DC, et al. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet, 1997;16:100–103.

    Article  PubMed  CAS  Google Scholar 

  27. Martinson JJ, Hong L, Karanicolas R, et al. Global distribution of the CCR2-64I/CCR5-59653T HIV-1 disease-protective haplotype. AIDS, 2000; 14: 483–489.

    Article  PubMed  CAS  Google Scholar 

  28. Su, B, Jin L, Hu, F, et al. Distribution of two HIV-1 resistant polymorphisms (SDF1-3’A and CCR2-64I) in East Asian and world populations and its implication in AIDS epidemiology. Am J Hum. Genet, 1999;65:1047–1053.

    Article  PubMed  CAS  Google Scholar 

  29. Clayton J, Lonjou C. Allele and haplotype frequencies for HLA loci in various ethnic groups. In: Charron D, ed. Genetic Diversity of HLA: Functional. and Medicinal Implication. Paris: Medical and Scientific International, 1997: 665–776.

    Google Scholar 

  30. Weber W, Nash DJ, Motulsky AG, et al. Phylogenetic relationships of human populations in sub-Saharan Africa. Hum Biol, 2000;72:753–772.

    PubMed  CAS  Google Scholar 

  31. Goddard KA, Hopkins PJ, Hall JM, et al. Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet, 2000;66:216–234.

    Article  PubMed  CAS  Google Scholar 

  32. Shriver MD, Smith, MW, Jin L, et al. Ethnicaffiliation estimation by use of population-specific DNA markers. Am J Hum Genet, 1997;60:957–964.

    PubMed  CAS  Google Scholar 

  33. HIV/AIDS Surveillance Report. Atlanta: Centers for Disease Control, 2001.

    Google Scholar 

  34. The Working Group on Mother-to-Child Transmission of HIV Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8:506–510.

    Google Scholar 

  35. Colebunders RL, Latif AS. Natural history and clinical presentation of HIV-1 infection in adults. AIDS. 1991;5:S103–S112.

    PubMed  Google Scholar 

  36. Whittle H, Egboga A, Todd J, et al. Clinical and laboratory predictors of survival in Gambian patients with symptomatic HIV-1 or HIV-2 infection. AIDS, 1992:6:685–689.

    Article  PubMed  CAS  Google Scholar 

  37. Anzala OA, Nagelkerke NJ, Bwayo JJ, et al. Rapid progression to disease in African sex workers with human immunodeficiency virus type 1 infection. J Infect Dis, 1995;171:686–689.

    PubMed  CAS  Google Scholar 

  38. Bwayo JJ, Nagelkerke NJ, Moses S, et al. Comparison of the declines in CD4 counts in HIV-1-seropositive female sex workers and women from the general population in Nairobi, Kenya. J Acquir Immune Defic Syndr Hum Retrovirol, 1995;10:457–461.

    PubMed  CAS  Google Scholar 

  39. Mann JM, Bila K, Colebunders RL, et al. Natural history of human immunodeficiency virus infection in Zaire. Lancet, 1986;2:707–709.

    Article  PubMed  CAS  Google Scholar 

  40. Leroy V, Msellati P, Lepage P, et al. Four years of natural history of HIV-1 infection in african women: a prospective cohort study in Kigali (Rwanda), 1988–1993. J Acquir Immune Defic Syndr Hum Retrovirol, 1995;9:415–421.

    PubMed  CAS  Google Scholar 

  41. Morgan D, Malamba SS, Maude GH, et al. An HIV-1 natural history cohort and survival times in rural Uganda. AIDS, 1997;11:633–640.

    Article  PubMed  CAS  Google Scholar 

  42. Morgan D, Whitworth J. The natural history of HIV-1 infection in Africa. Nat Med, 2001; 7: 143–145.

    Article  PubMed  CAS  Google Scholar 

  43. Anzala AO, Simonsen JN, Kimani J, et al. Acute sexually transmitted infections increase human immunodeficiency virus type 1 plasma viremia, increase plasma type 2 cytokines, and decrease CD4 cell counts. J Infect Dis, 2000; 182:459–466.

    Article  PubMed  CAS  Google Scholar 

  44. Hu DJ, Fleming PL, Castro KG, et al. How important is race/ethnicity as an indicator of risk for specific AIDS-defining conditions? J Acquir Immune Defic Syndr Hum Retrovirol, 1995;10:374–380.

    PubMed  CAS  Google Scholar 

  45. Vlahov D, Polk BF. Perspectives on infection with HIV-1 among intravenous drug users. PsychopharmacolBull. 1988;24:325–329.

    CAS  Google Scholar 

  46. Galai N, Vlahov D, Margolick JB, et al. Changes in markers of disease progression in HIV-1 seroconverters: a comparison between cohorts of injecting drug users and homosexual men. J Acquir Immune Defic Syndr Hum Retrovirol, 1995;8:66–74.

    PubMed  CAS  Google Scholar 

  47. Low N, Paine K, Clark R, et al. AIDS survival and progression in black Africans living in south London, 1986–1994. Genitourin Med, 1996;72:12–16.

    PubMed  CAS  Google Scholar 

  48. O’Farrell N, Lau R, Yoganathan K, et al. AIDS in Africans living in London. Genitourin Med, 1995;71:358–362.

    Google Scholar 

  49. Galai N, Kalinkovich A, Burstein R, et al. African HIV-1 subtype C and rate of progression among Ethiopian immigrants in Israel. Lancet, 1997;349:180–181.

    Article  PubMed  CAS  Google Scholar 

  50. Lander ES, Schork NJ. Genetic dissection of complex traits. Science, 1994;265:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  51. Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl Acad Sci USA. 1999:96:15173–15177.

    Article  PubMed  CAS  Google Scholar 

  52. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999;22:139–144.

    Article  PubMed  CAS  Google Scholar 

  53. Huttley GA, Smith MW, Carrington M, et al. A scan for linkage disequilibrium across the human genome. Genetics, 1999;152:1711–1722.

    PubMed  CAS  Google Scholar 

  54. Goedert JJ, Biggar RJ, Winn DM, et al. Decreased helper T lymphocytes in homosexual men. II. Sexual practices. Am J Epidemiol, 1985;121:637–644.

    PubMed  CAS  Google Scholar 

  55. Buchbinder SP, Katz MH, Hessol NA, et al. Long-term HIV-1 infection without immunologic progression. AIDS, 1994:8:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  56. Detels R, Liu Z, Hennessey K, et al. Resistance to HIV-1 infection: the Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr, 1994;7:1263–1269.

    PubMed  CAS  Google Scholar 

  57. Phair J, Jacobson L, Detels R, et al. Acquired immune deficiency syndrome occurring within 5 years of infection with human immunodeficiency virus type-1: the Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr, 1992;5:490–496.

    PubMed  CAS  Google Scholar 

  58. Vlahov D, Graham N, Hoover D, et al. Prognostic indicators for AIDS and infectious disease death in HIV-infected injection drug users: plasma viral load and CD4+ cell count, JAMA, 1998;279:35–40.

    Article  PubMed  CAS  Google Scholar 

  59. Hilgartner MW, Donfield SM, Willoughby A, et al. Hemophilia growth and development study: Design, methods, and entry data. Am J Pediatr Hematol Oncol, 1993;15:208–218.

    Article  PubMed  CAS  Google Scholar 

  60. An P, Martin MP, Nelson GW, et al. Influence of CCR5 promoter haplotypes on AIDS progression in African-Americans. AIDS, 2000;14:2117–2122.

    Article  PubMed  CAS  Google Scholar 

  61. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. MMWR. 1987;36(suppl. 1):1S–15S.

    Google Scholar 

  62. 1993 revised classification system for HIV infection and an expanded surveillance case definition for AIDS among adolescents and adults. MMWR, 41:1992.

    Google Scholar 

  63. Cocchi F, DeVico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science, 1995;270:1811–1815.

    Article  PubMed  CAS  Google Scholar 

  64. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-lalpha, MlP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996;272:1955–1958.

    Article  PubMed  CAS  Google Scholar 

  65. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996;382:829–833.

    Article  PubMed  CAS  Google Scholar 

  66. Bleul CC, Wu L, Hoxie JA, et al. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA, 1997;94:1925–1930.

    Article  PubMed  CAS  Google Scholar 

  67. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996;381:667–673.

    Article  PubMed  CAS  Google Scholar 

  68. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996;272:872–877.

    Article  PubMed  CAS  Google Scholar 

  69. Richman DD, Bozzette SA. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis. 1994;169:968–974.

    PubMed  CAS  Google Scholar 

  70. Roos MT, Lange JM, de Goede RE, et al. Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J Infect Dis, 1992;165:427–432.

    PubMed  CAS  Google Scholar 

  71. Zhang YJ, Dragic T, Cao Y, et al. Use of coreceptors other than CCR5 by non-syncytium-inducing adult and pediatric isolates of human immunodeficiency virus type 1 is rare in vitro. J Virol, 1998;72:9337–9344.

    PubMed  CAS  Google Scholar 

  72. Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 1993;261:1179–1181.

    Article  PubMed  CAS  Google Scholar 

  73. Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 1996;85:1135–1148.

    Article  PubMed  CAS  Google Scholar 

  74. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999:17:657–700.

    Article  PubMed  CAS  Google Scholar 

  75. Xiao L, Rudolph DL, Owen SM, et al. Adaptation to promiscuous usage of CC and CXC-chemokine coreceptors in vivo correlates with HIV-1 disease progression. AIDS, 1998:12:F137–F143.

    Article  PubMed  CAS  Google Scholar 

  76. Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996;86:367–377.

    Article  PubMed  CAS  Google Scholar 

  77. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 1996:382:722–725.

    Article  PubMed  CAS  Google Scholar 

  78. Zimmerman PA, Buckler-White A, Alkhatib G, et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med, 1997;3:23–36.

    PubMed  CAS  Google Scholar 

  79. Wu L, Paxton WA, Kassam N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med, 1997;185:1681–1691.

    Article  PubMed  CAS  Google Scholar 

  80. Benkirane M, Jin DY, Chun RF, et al. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5del32. J Biol Chem, 1997:272:30603–30606.

    Article  PubMed  CAS  Google Scholar 

  81. Nguyen GT, Carrington M, Beeler JA, et al. Phenotypic expressions of CCR5-delta32/del32 homozygosity. J Acquir Immune Defic Syndr, 1999:22:75–82.

    PubMed  CAS  Google Scholar 

  82. Paxton WA, Liu R, Kang S, et al. Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines. Virology, 1998:244:66–73.

    Article  PubMed  CAS  Google Scholar 

  83. Maayan S, Zhang L, Shinar E, et al. Evidence for recent selection of the CCR5-delta 32 deletion from differences in its frequency between Ashkenazi and Sephardi Jews. Genes Immun, 2000; 1:358–361.

    Article  PubMed  CAS  Google Scholar 

  84. Libert F, Cochaux P, Beckman G, et al. The delta CCR5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum Mol Genet, 1998:7:399–406.

    Article  PubMed  CAS  Google Scholar 

  85. Michael NL, Louie LG, Rohrbaugh AL, et al. The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression, Nat Med, 1997;3:1160–1162.

    Article  PubMed  CAS  Google Scholar 

  86. Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med, 1996;2:1240–1243.

    Article  PubMed  CAS  Google Scholar 

  87. Theodorou I, Meyer L, Magierowska M, et al. HIV-1 infection in an individual homozygous for CCR5 delta 32. Lancet, 1997;349:1219–1220.

    Article  PubMed  CAS  Google Scholar 

  88. O’Brien TR, Winkler C, Dean M, et al. HIV-1 infection in a man homozygous for CCR5 delta 32. Lancet, 1997;349:1219.

    Google Scholar 

  89. Biti R, French R, Young J, et al. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med, 1997;3:252–253.

    Article  PubMed  CAS  Google Scholar 

  90. Balotta C, Bagnarelli P, Violin M, et al. Homozygous delta 32 deletion of the CCR-5 chemokine receptor gene in an HIV-1-infected patient. AIDS, 1997; 11:67–71.

    Article  Google Scholar 

  91. Michael NL, Nelson JA, Kewal Ramani VN, et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol, 1998; 72:6040–6047.

    PubMed  CAS  Google Scholar 

  92. Hoffman TL, MacGregor RR, Burger H, et al. CCR5 genotypes in sexually active couples discordant for human immunodeficiency virus type 1 infection status. J Infect Dis, 1997; 176:1093–1096.

    Article  PubMed  CAS  Google Scholar 

  93. Ioannidis JP, O’Brien TR, Rosenberg PS, et al. Genetic effects on HIV disease progression. Nat Med, 1998;4:536.

    Article  PubMed  CAS  Google Scholar 

  94. Rousseau CM, Just JJ, Abrams EJ, et al. CCR5del32 in perinatal HIV-1 infection. J Acquir Immune Defic Syndr Hum Retrovirol, 1997;16:239–242.

    PubMed  CAS  Google Scholar 

  95. Edelstein RE, Arcuino LA, Hughes JP, et al. Risk of mother-to-infant transmission of HIV-1 is not reduced in CCR5/delta32ccr5 heterozygotes. J Acquir Immune Defic Syndr Hum Retrovirol, 1997;16:243–246.

    PubMed  CAS  Google Scholar 

  96. Misrahi M, Teglas JP, N’Go N, et al. CCR5 chemokine receptor variant in HIV-1 mother-to-child transmission and disease progression in children. JAMA, 1998;279:277–280.

    Article  PubMed  CAS  Google Scholar 

  97. Philpott S, Burger H, Charbonneau T, et al. CCR5 genotype and resistance to vertical transmission of HIV-1. J Acquir Immun Deflc Syndr, 1999; 21:189–193.

    CAS  Google Scholar 

  98. Shearer WT, Kalish LA, and Zimmerman PA. CCR5 HIV-1 Vertical Transmission. J Acquir Immune Defic Syndr Hum Retrovirol, 1998;17(2):180–181.

    PubMed  CAS  Google Scholar 

  99. Mas A, Espanol T, Heredia A, et al. CCR5 genotype and HIV-1 infection in perinatally-exposed infants. J Infect Dis, 1999;38:9–11.

    CAS  Google Scholar 

  100. Barroga CF, Raskino C, Fangon MC, et al. The CCR5Delta32 allele slows disease progression of human immunodeficiency virus-1-infected children receiving antiretroviral treatment. J Infect Dis, 2000;182:413–419.

    Article  PubMed  CAS  Google Scholar 

  101. Mangano A, Prada F, Roldan A, et al. Distribution of CCR-5 delta32 allele in Argentinian children at risk of HIV-1 infection: its role in vertical transmission. AIDS, 1998;12:109–110.

    PubMed  CAS  Google Scholar 

  102. Mangano A, Kopka J, Batalla M, et al. Protective effect of CCR2-64I and not of CCR5-delta32 and SDF1-3’A in pediatric HIV-1 infection. J Acquir Immune Defic Syndr, 2000;23:52–57.

    PubMed  CAS  Google Scholar 

  103. Buseyne F, Janvier G, Teglas JP, et al. Impact of heterozygosiry for the chemokine receptor CCR5 32-bp-deleted allele on plasma virus load and CD4 T lymphocytes in perinatally human immunodeficiency virus-infected children at 8 years of age. J Infect Dis, 1998; 178:1019–1023

    Article  PubMed  CAS  Google Scholar 

  104. Meyer L, Magierowska M, Hubert JB, et al. Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. AIDS, 1997;11:F73–F78.

    Article  PubMed  CAS  Google Scholar 

  105. Michael NL, Louie LG, Rohrbaugh AL, et al. The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat Med, 1997;3:1160–1162.

    Article  PubMed  CAS  Google Scholar 

  106. Katzenstein TL, Eugen-Olsen J, Hofmann B, et al. HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. J Acquir Immune Defic Syndr Hum Retrovirol, 1997; 16:10–14.

    PubMed  CAS  Google Scholar 

  107. Walli R, Reinhart B, Luckow B, et al. HIV-1-infected long-term slow progressors heterozygous for delta32-CCR5 show significantly lower plasma viral load than wild-type slow progressors. J Acquir Immune Defic Syndr Hum Retrovirol, 1998;18:229–233.

    PubMed  CAS  Google Scholar 

  108. Ioannidis JP, Contopoulos-Ioannidis DG. Maternal viral load and the risk of perinatal transmission of HIV-1. N Engl J Med, 1999;341:1698–1700.

    Article  PubMed  CAS  Google Scholar 

  109. Contopoulos-Ioannidis DG, loannidis JP. Maternal cell-free viremia in the natural history of perinatal HIV-1 transmission: a meta-analysis. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;18:126–135.

    PubMed  CAS  Google Scholar 

  110. John GC, Nduati RW, Mbori-Ngacha DA, et al. Correlates of mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission: association with maternal plasma HIV-1 RNA load, genital HIV-1 DNA shedding, and breast infections. J Infect Dis, 2001;183:206–212.

    Article  PubMed  CAS  Google Scholar 

  111. Gonzalez E, Bamshad M, Sato N, et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci USA, 1999;96:12004–12009.

    Article  PubMed  CAS  Google Scholar 

  112. Ometto L, Bertorelle R, Mainardi M, et al. Polymorphisms in the CCR5 promoter region influence disease progression in perinatally human immunodeficiency virus type 1-infected children. J Infect Dis, 2001;183:814–818.

    Article  PubMed  CAS  Google Scholar 

  113. Kostrikis LG, Huang Y, Moore JP, et al. A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat Med, 1998;4:350–353.

    Article  PubMed  CAS  Google Scholar 

  114. Anzala AO, Ball TB, Rostron T, et al. CCR2-64I allele and genotype association with delayed AIDS progression in African women. Lancet, 1998;351:1632–1633.

    Article  PubMed  CAS  Google Scholar 

  115. Williamson C, Loubser SA, Brice B, et al. Allelic frequencies of host genetic variants influencing susceptibility to HIV-1 infection and disease in South African populations. AIDS, 2000; 14:449–451.

    Article  PubMed  CAS  Google Scholar 

  116. Schinkel J, Langendam MW, Coutinho RA, et al. No evidence for an effect of the CCR5 delta32/+ and CCR2b 64I/+ mutations on human immunodeficiency virus (HIV)-1 disease progression among HIV-1-infected injecting drug users. J Infect Dis, 1999;179:825–831.

    Article  PubMed  CAS  Google Scholar 

  117. Daar ES, Lynn H, Donfield S, et al. Effects of plasma HIV RNA, CD4+ T lymphocytes, and the chemokine receptors CCR5 and CCR2b on HIV disease progression in hemophiliacs. J Acquir. Immune Defic Syndr, 1999;21:317–325.

    PubMed  CAS  Google Scholar 

  118. Donfield SM, Lynn HS, Hilgartner MW. Progression to AIDS. Science, 1998;280:1819–1820.

    Article  PubMed  CAS  Google Scholar 

  119. Smith MW, Dean M, Carrington M, et al. Progression to AIDS response. Science, 1998;280:1821.

    Google Scholar 

  120. Teglas JP, N’Go N, Burgard M, et al. CCR2B-64I chemokine receptor allele and mother-to-child HIV-1 transmission or disease progression in children, JAcquir Immune Defic Syndr, 1999;22:267–271.

    CAS  Google Scholar 

  121. Mummidi S, Ahuja SS, McDaniel BL, et al. Multiple transcripts with 5’end heterogeneity, dual promoter usage, and evidence for polymorphisms within the regulatory regions and noncoding exons. J Biol Chem, 1997;272:30662–30671.

    Article  PubMed  CAS  Google Scholar 

  122. Carrington M, Dean M, Martin MP, et al. Genetics of HIV-1 infection: Chemokine receptor CCR5 polymorphism and its consequences. Hum Mol Genet, 1999;8:1939–1945.

    Article  PubMed  CAS  Google Scholar 

  123. Kostrikis LG, Neumann AU, Thomson B, et al. A polymorphism in the regulatory region of the CCchemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J Virol, 1999;73:10264–10271.

    PubMed  CAS  Google Scholar 

  124. Van Rij RP, Broersen S, Goudsmit J, et al. The role of a stromal cell-derived factor-1 chemokine gene variant in the clinical course of HIV-1 infection. AIDS, 1998;12:F85–F90.

    Article  PubMed  Google Scholar 

  125. John GC, Rousseau C, Dong T, et al. Maternal SDF1 3’A polymorphism is associated with increased perinatal human immunodeficiency virus type 1 transmission. J Virol, 2000;74:5736–5739.

    Article  PubMed  CAS  Google Scholar 

  126. Al Sharif F, Ollier WE, Hajeer AH. A rare polymorphism at position-28 in the human RANTES promoter. Eur J Immunogenet. 1999;26:373–374.

    Article  PubMed  Google Scholar 

  127. Hajeer AH, al Sharif F, Ollier WE. A polymorphism at position-403 in the human RANTES promoter. Eur J Immunogenet. 1999;26:375–376.

    Article  PubMed  CAS  Google Scholar 

  128. Nickel RG, Casolaro V, Wahn U, et al. Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES. J Immunol, 2000;164:1612–1616.

    PubMed  CAS  Google Scholar 

  129. Fiorentino DF, Zlotnik A, Mosmann TR, et al. IL-10 inhibits cytokine production by activated macrophages. J Immunol, 1991;147:3815–3822.

    PubMed  CAS  Google Scholar 

  130. Fiorentino DF, Zlotnik A, Vieira P, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol, 1991;146:3444–3451.

    PubMed  CAS  Google Scholar 

  131. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV Th2 clones secrete a factor that inhibits cytokine production by Th1 clones, J Exp Med, 1989;170:2081–2095.

    Article  PubMed  CAS  Google Scholar 

  132. Kollmann TR, Pettoello-Mantovani M, Katopodis NF, et al. Inhibition of acute in vivo human immunodeficiency virus infection by human interleukin 10 treatment of SCID mice implanted with human fetal thymus and liver. Proc NatlAcad Sci, USA, 1996;93:3126–3131.

    Article  CAS  Google Scholar 

  133. Schols D, De Clercq E. Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J Virol, 1996;70:4953–4960.

    PubMed  CAS  Google Scholar 

  134. Turner DM, Williams DM, Sankaran D, et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet, 1997; 24:1–8.

    PubMed  CAS  Google Scholar 

  135. Crawley E, Kay R, Sillibourne J, et al. Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum, 1999;42:1101–1108.

    Article  PubMed  CAS  Google Scholar 

  136. Gibson AW, Edberg JC, Wu J, et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol, 2001;166:3915–3922.

    PubMed  CAS  Google Scholar 

  137. Lalani I, Bhol K, Ahmed AR. Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol, 1997;79:469–483.

    Article  PubMed  CAS  Google Scholar 

  138. Lee MS, Mueller R, Wicker LS, et al. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J Exp Med, 1996;183:2663–2668.

    Article  PubMed  CAS  Google Scholar 

  139. Llorente L, Zou W, Levy Y, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med, 1995;181,:839–844.

    Article  PubMed  CAS  Google Scholar 

  140. Zinkernagel RM, Dunlop MB, Doherty PC. Cytotoxic T cell activity is strain-specific in outbred mice infected with lymphocytic choriomeningitis virus. J Immunol, 1975;115:1613–1616.

    PubMed  CAS  Google Scholar 

  141. Zinkernagel RM, Doherty PC. Virus-immune cytotoxic T cells are sentized to by virus specifically altered structures coded for in H-2K or H-2D: a biological role for major histocompatibility antigens. Adv Exp Med Biol, 1976;66:387–389.

    PubMed  CAS  Google Scholar 

  142. Hill AV The immunogenetics of human infectious diseases. Annu Rev Immunol, 1998; 16:593–617.

    Article  PubMed  CAS  Google Scholar 

  143. Just JJ. Genetic predisposition to HIV-1 infection and acquired immune deficiency virus syndrome: a review of the literature examining associations with HLA. Hum Immunol, 1995;44:156–169.

    Article  PubMed  CAS  Google Scholar 

  144. Kaslow RA, Carrington M, Apple R, et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med, 1996;2:405–411.

    Article  PubMed  CAS  Google Scholar 

  145. Gao X, Nelson GW, Karacki P, et al. Effect of a single amino acid substitution in MHC class I molecules on the rate of progression to AIDS. N Engl J Med, 2001;344:1668–1675.

    Article  PubMed  CAS  Google Scholar 

  146. Hughes, A, Yeager, M. Natural selection at major histocompatibility complex loci vertebrates. Annu Rev Genet, 1999;32:415–435.

    Article  Google Scholar 

  147. Rowland-Jones SL, Dong T, Dorrell L, et al. Broadly cross-reactive HIV-specific cytotoxic T-lymphocytes in highly-exposed persistently seronegative donors. Immunol Lett, 1999;66:9–14.

    Article  PubMed  CAS  Google Scholar 

  148. Rowland-Jones SL, Dong T, Fowke KR, et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J Clin Invest, 1998;102:1758–1765.

    Article  PubMed  CAS  Google Scholar 

  149. MacDonald KS, Fowke KR, Kimani J, et al. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis, 2000;181:1581–1589.

    Article  PubMed  CAS  Google Scholar 

  150. MacDonald KS, Embree JE, Nagelkerke NJ, et al. The HLA A2/6802 supertype is associated with reduced risk of perinatal human immunodeficiency virus type 1 transmission. J Infect Dis, 2001;183;503–506.

    Article  PubMed  CAS  Google Scholar 

  151. Plummer FA, Simonsen JN, Cameron DW, et al. Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J Infect Dis, 1991;163:233–239.

    PubMed  CAS  Google Scholar 

  152. Eskild A, Jonassen TO, Heger B, et al. The estimated impact of the CCR-5 delta32 gene deletion on HIV disease progression varies with study design. AIDS, 1998;12:2271–2274.

    Article  PubMed  CAS  Google Scholar 

  153. Smith MW, Dean M, Carrington M, et al. CCR5-delta 32 gene deletion in HIV-1 infected patients. Lancet, 1997;350:741.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Winkler, C.A., O’Brien, S.J. (2002). Effect of Genetic Variation on HIV Transmission and Progression to AIDS. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics