Skip to main content

HIV-1 Drug Resistance

  • Chapter
AIDS in Africa

Conclusion

These issues also impact the question of postexposure prophylaxis in the occupational setting; resistance considerations in this context should not be ignored. One special subject, widely practiced at this time, is the use of drugs to prevent mother-to-infant transmission of HIV-1. Clearly, there is a need to balance the benefits of prevention of such transmission against the potential for development of resistant strains by use of single antiretroviral agents such as nevirapine. In addition, the simplicity of any given regimen needs to be balanced against the likelihood that resistance may occur. The importance of HIV drug resistance also needs to be considered in relation to its potential pathogenetic impact on other infectious diseases such as tuberculosis.

Thus, there are now compelling reasons for the introduction of widespread resistance testing wherever ARVs are being used. The introduction of resistance testing must be accompanied by local capacity building and must reflect regional considerations such as the nature of viral subtypes prevalent in any given geographic locale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furman PA, Fyfe JA, St Clair MH, et al. Phosphorylation of 3′-azido-3′ deoxythymidine and selective interactions of the 5′-triphosphate with human immunodeficiency virus reverse transcrip-tase.Proc Natl Acad. Sci USA, 1986;83:8333–8337.

    PubMed  CAS  Google Scholar 

  2. Hart GJ, Orr DC, Penn CR, et al. Effects of (-) 2′-deoxy-3′-thiacytidine (3TC) 5′-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases alpha, beta and gamma Antimicrob Agents Chemother, 1992;37:918–920.

    Google Scholar 

  3. Ding J, Das K, Moereels H, et al. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse non-nucleoside inhibitors. Nature Struct Biology, 1995;2:407–415.

    CAS  Google Scholar 

  4. Wu JC, Warren TC, Adams J, et al. A novel dipyrido-diazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site. Biochemistry, 1991;30:2022–2026.

    PubMed  CAS  Google Scholar 

  5. Spence RA, Kati WM, Anderson KS, et al. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Science, 1995; 267:988–992.

    PubMed  CAS  Google Scholar 

  6. Gu Z, Quan Y, Li Z, et al. Effects of non-nucleoside inhibitors of human immunodeficiency virus type 1 in cell-free recombinant reverse transcriptase assays. J Biol Chem, 1995;270:31046–31051.

    Article  PubMed  CAS  Google Scholar 

  7. Gunthard HF, Wong JK, Ignacio CC, et al. Human immunodeficiency virus replication and genotypic resistance in blood and lymph nodes after a year of potent antiretroviral therapy. J Virol, 1998;72:2422–2428.

    PubMed  CAS  Google Scholar 

  8. Palmer S, Shafer RW, Merigan TC. Highly drug-resistant HIV-1 clinical isolates are cross-resistant to many antiretroviral compounds in current clinical development. AIDS, 1999; 13:661–7.

    Article  PubMed  CAS  Google Scholar 

  9. Finzi, D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine, 1997;5:512–517.

    Google Scholar 

  10. Wong, JK, Hezareh M, Gunthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science, 1997;278(5431):1291–1295.

    PubMed  CAS  Google Scholar 

  11. Schinazi R, Larder B, Mellors J. Mutations in retro-viral genes associated in drug resistance. Intl Antiviral News, 1997;5:129–142.

    Google Scholar 

  12. DAIDS Virology Manual for HIV Laboratories: National Institute for Allergy and Infectious Disease, January 1997.

    Google Scholar 

  13. Japour AJ, Mayers DL, Johnson VA, et al. A standardized peripheral mononuclear assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother, 1993;37:1095–1101.

    PubMed  CAS  Google Scholar 

  14. Richman D, Shih CK, Lowy I, et al. Human immunodeficiency virus type 1 mutants resistant to non-nucleoside inhibitors of reverse transcriptase arise in cell culture. Proc Natl Acad Sci USA, 1991; 88:11241–11245.

    PubMed  CAS  Google Scholar 

  15. Vandamme AM, Debyser Z, Pauwels R, et al. Characterization of HIV-1 strains isolated from patients treated withTIBO R82913. AIDS Res Hum Retroviruses, 1994; 10:39–46.

    PubMed  CAS  Google Scholar 

  16. Chong KT, Pagano PJ, Hinshaw RR. Bishe-teroarylpiperazine reverse transcriptase inhibitor in combination with 3′-azido-3′-deoxythymidine or 2′,3′-dideoxycytidine synergistically inhibits human immunodeficiency virus type 1 replication in vitro. Antimicrob Agents Chemother, 1994;38:288–293.

    PubMed  CAS  Google Scholar 

  17. Esnouf R, Ren J, Ross C, et al. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nature Struct Biol, 1995;2:303–308.

    Article  PubMed  CAS  Google Scholar 

  18. Fletcher RS, Arion D, Borkow G, et al. Synergistic inhibition of HIV-1 reverse transcriptase DNApoly-merase activity and virus replication in vitro by combinations of carboxanilide non-nucleoside compounds. Biochemistry, 1995;34:10106–10112.

    PubMed  CAS  Google Scholar 

  19. Byrnes VW, Sardana VV, Schleif WA, et al. Comprehensive mutant enzyme and viral variant assessment of human immunodeficiency virus type 1 reverse transcriptase resistance to non-nucleoside inhibitors. Antimicrob Agents Chemother, 1993; 37:1576–1579.

    PubMed  CAS  Google Scholar 

  20. Balzarini J, Karlsson A, Perez-Perez MJ, et al. Treatment of human immunodeficiency virus type 1 (HIV-1)-infected cells with combinations of HIV-1-specific inhibitors results in different resistance pattern than does treatment with single-drug therapy. J Virol, 1993;67:5353–5359.

    PubMed  CAS  Google Scholar 

  21. Sardana VV, Emini EA, Gotlib L, et al. Functional analysis of HIV-1 reverse transcriptase amino acids involved in resistance to multiple non-nucleoside inhibitors. J Biol Chem, 1992;267:17526–17530.

    PubMed  CAS  Google Scholar 

  22. Dueweke TJ, Pushkarskaya T, Poppe SM, et al. A mutation in reverse transcriptase of bis(hetroaryl) piperazine-resistant human immunodeficiency virus type 1 that confers increased sensitivity to other non-nucleoside inhibitors. Proc Natl Acad Sci USA, 1993;90:4713–4717.

    PubMed  CAS  Google Scholar 

  23. Jacobo-Molina A, Ding J, Nanni RG, et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc Natl Acad Sci USA, 1993;90:6320–6324.

    PubMed  CAS  Google Scholar 

  24. Kolstaedt LA, Wang J, Friedman JM, et al. Crystal structure at 35 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 1992;256:1783–1790.

    Google Scholar 

  25. Nunberg JH, Schleif WA, Boots EJ, et al. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J Virol, 1991;65:4887–4892.

    PubMed  CAS  Google Scholar 

  26. Jonckheere H, Taymans JM, Balzarini J, et al. Resistance of HIV-1 reverse transcriptase against [2′,5′-bis-O-(tert-butyldimethylsilyl-3′-spiro5″-(4″amino-1″,2″-oxathiole-2″,2″-dioxide)] (TSAO) derivatives is determined by the mutation G1u138 (Lys on the p51 subunit. J Biol Chem, 1994;269: 25255–25258.

    PubMed  CAS  Google Scholar 

  27. Loya S, Bakhanashvili M, Tal R, et al. Enzymatic properties of two mutants of reverse transcriptase of human immunodeficiency virus type 1 (tyrosine 181(isoleucine and tyrosine 188(leucine), resistant to nonnucleoside inhibitors. AIDS Res Hum Retroviruses, 1994;10:939–946.

    Article  PubMed  CAS  Google Scholar 

  28. Boyer PL, Currens MJ, McMahon JB, et al. Analysis of non-nucleoside drug-resistance variants of human immunodeficiency virus type 1 reverse transcriptase. J Virol, 1993;67:2412–2420.

    PubMed  CAS  Google Scholar 

  29. Condra J. Virologic and clinical implications of resistance to HIV-1 protease inhibitors. Drug Resistance Updates, 1998; 1:292–299.

    Article  CAS  PubMed  Google Scholar 

  30. Deeks SG. Failure of HIV-1 protease inhibitors to fully suppress viral replication. Implications for salvage therapy. Adv Exptl Med Biol, 1999;458:175–182.

    CAS  Google Scholar 

  31. Murphy RI. New antiretroviral drugs part I: PIs. AIDS Clin Care, 1999; 11:35–37.

    PubMed  CAS  Google Scholar 

  32. Sham HL, Kempf DJ, Molla A, et al. ABT-378, a highly potent inhibitor of human immunodeficiency virus protease. Antimicrob Agents Chemother, 1998;42:3218–3224.

    PubMed  CAS  Google Scholar 

  33. Parades R, Puig T, Amo A, et al. High-dose saquinavir plus ritonavir: long-term efficacy in HIV-positive protease inhibitor-experienced patients and predictors of virologic response. J AIDS, 1999;22:132–138.

    Google Scholar 

  34. Reiser M, Salzberger B, Steipel A, et al. Virological efficacy and plasma drug concentrations of nelfinavir plus saquinavir as salvage therapy in HIV-infected patients refractory to standard triple therapy. Eur JMed Res, 1999;4:54–58.

    CAS  Google Scholar 

  35. Stuyver L, Wyseur A, Rombout A, et al. Line probe assay for rapid detection of drug-selected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene. Antimicrob Agents Chemother, 1997;4:284–291.

    Google Scholar 

  36. Merigan T. Viral resistance testing: practical issues and future opportunities. AIDS Treat News, 1999:316:1–6.

    Google Scholar 

  37. Durant J, Clevenbergh P, Halfon P, et al. Drug resistance genotyping in HIV-1 therapy; the VIRADAPT randomized controlled trial. Lancet, 1999;353:2195–2199.

    Article  PubMed  CAS  Google Scholar 

  38. Van Vaerenbergh K, Van Laethem K, Van Wijngaerden E, et al. Baseline HIV type 1 genotypic resistance to a newly added nucleoside analog is predictive of virologic failure of the new therapy. AIDS Res Hum Retroviruses, 2000;16:529–537.

    Article  PubMed  Google Scholar 

  39. Salomon H, Wainberg MA, Brenner BG, et al. Prevalence of HIV-1 viruses resistant to antiretroviral drugs in 81 individuals newly infected by sexual contact or intravenous drug use. AIDS, 2000; 14:F17–F23.

    PubMed  CAS  Google Scholar 

  40. Yerly S, Kaiser L, Race E, et al. Transmission of antiretroviral-drug-resistant HIV-1 variants. Lancet, 1999;354:729–733.

    Article  PubMed  CAS  Google Scholar 

  41. Boden D, Hurley A, Zhang L, et al. HIV-1 drug resistance in newly infected individuals. JAMA, 1999;282:1135–1141.

    Article  PubMed  CAS  Google Scholar 

  42. Little SJ, Daar ES, D’Aquila RT, et al. Reduced drug susceptibility among patients with primary HIV infection. JAMA, 1999;282:1142–1149.

    Article  PubMed  CAS  Google Scholar 

  43. Hecht GM, Grant RM, Petropoulos CJ, et al. Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors. N Engl J Med, 1998;339:307–311.

    Article  PubMed  CAS  Google Scholar 

  44. Brenner BG, Wainberg MA. The role of antiretrovirals and drug resistance in vertical transmission. Annals NY Acad Sci, 2000;918:9–15.

    CAS  Google Scholar 

  45. Quinones ME, Arts EJ. Recombination in HIV: Update and implications. AIDS Rev, 1999; 1:89–100.

    Google Scholar 

  46. Jansens W, Buve A, Nkengasong JN. The puzzle of HIV-1 subtypes in Africa. AIDS, 1997;11:705–712.

    Google Scholar 

  47. Descamps D, Collin G, Letourneur F, et al. Susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents: in vitro phenotypic and genotypic analysis. J Virol, 1997;71:8893–8898.

    PubMed  CAS  Google Scholar 

  48. Apetrei C, Descamps D, Collin, et al. Human immunodeficiency virus subtype F reverse transcriptase sequence and drug susceptibility. J Virol, 1998;72:3534–3538.

    PubMed  CAS  Google Scholar 

  49. Montano MA, Novitsky VA, Blackard JT, et al. Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 sub-stypes. J Virol, 1997;71:8657–8665.

    PubMed  CAS  Google Scholar 

  50. Caride E, Hertogs, Larder B, et al. Genotyping and phenotyping analysis of B and non-B HIV-1 subtypes from Brazilian patients under HAART. Antiviral Ther, 2000;5:128.

    Google Scholar 

  51. Wainberg MA, Friedland G. Public health implications of antiretroviral therapy and HIV drug resistance. JAMA, 1999;279:1977–1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wainberg, M.A., Brenner, B.G. (2002). HIV-1 Drug Resistance. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics