Skip to main content

Classification of Expression Patterns Using Artificial Neural Networks

  • Chapter
A Practical Approach to Microarray Data Analysis

Summary

We have presented an ANN-based method for classification of gene expression data. This method was successfully applied to the example of classifying SRBCTs into distinct diagnostic categories. The key components of this classification procedure are PCA for dimensional reduction and cross-validation to optimize the training of the classifiers. In addition, we described a way to rank the genes according to their importance for the classification. Random permutation tests were introduced to assess the significance of the classification results. There are other ANN methods that have been used to classify gene expression data (Selaru et al., 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahneida J.S. (2002). Predictive non-linear modeling of complex data by artificial neural networks. Curr Opin Biotechnol 13:72–6.

    Google Scholar 

  • Bishop C.M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Bittner M., Meltzer P., Chen Y., Jiang Y., Seftor E., Hendrix M., Radmacher M., Simon R., Yakhini Z., Ben-Dor A., Sampas N., Dougherty E., Wang E., Marincola F., Gooden C., Lueders J., Glatfelter A., Pollock P., Carpten J., Gillanders E., Leja D., Dietrich K., Beaudry C., Berens M., Alberts D., Sondak V., Hayward N., Trent J. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–40.

    Article  PubMed  CAS  Google Scholar 

  • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531–7.

    Article  PubMed  CAS  Google Scholar 

  • Gruvberger S., Ringnér M., Chen Y., Panavally S., Saal L.H., Borg A., Fernoe M., Peterson C., Meltzer P.S. (2001). Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–84.

    PubMed  CAS  Google Scholar 

  • Hampshire J.B., Pearlmutter B. (1990). Equivalenceproofs for multi-layer perceptron classifiers and the Bayesian discriminant function. Proceedings of the 1990 connectionist models summer school. San Mateo, CA: Morgan Kaufman.

    Google Scholar 

  • Khan J., Simon R., Bittner M., Chen Y., Leighton S.B., Pohida T., Smith P.D., Jiang Y., Gooden G.C., Trent J.M., Meltzer P.S. (1998). Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58:5009–13.

    PubMed  CAS  Google Scholar 

  • Khan J., Wei J.S., Ringn’er M., Saal L.H., Ladanyi M., Westermann F., Berthold F., Schwab M., Atonescu C.R., Peterson C., Meltzer P.S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–79.

    Article  PubMed  CAS  Google Scholar 

  • Krogh A., Vedelsby J. (1995). Neural network ensembles, cross validation and active learning. Advances in Neural Information Processing Systems, Volume 7. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nguyen D.V., Rocke D.M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics; 18:39–50.

    PubMed  CAS  Google Scholar 

  • Pesarin F. (2001). Multivariate Permutation Tests: With Applications in Biostatistics. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Sarle W.S. (1998). How to measure the importance of inputs? Technical Report, SAS Institute Inc, Gary, NC, USA. Available at ftp://ftp.sas.com/pub/neural/FAQ.html.

    Google Scholar 

  • Selaru F.M., Xu Y., Yin J., Zou T., Liu T.C., Mori Y., Abraham J.M., Sato F., Wang S., Twigg C., Olaru A., Shustova V., Leytin A., Hytiroglou P., Shibata D., Harpaz N., Meltzer S.J. (2002). Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions. Gastroenterology 122:606–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ringnér, M., Edén, P., Johansson, P. (2003). Classification of Expression Patterns Using Artificial Neural Networks. In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds) A Practical Approach to Microarray Data Analysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47815-3_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47815-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7260-4

  • Online ISBN: 978-0-306-47815-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics