Skip to main content

Childhood Leukaemia and Radiation: The Sellafield Judgment

  • Chapter

Part of the book series: Advances in Nuclear Science & Technology ((ANST,volume 25))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Independent Advisory Group (Chairman: Sir Douglas Black), Investigation of the Possible Increased Incidence of Cancer in West Cumbria, HMSO, London (1984).

    Google Scholar 

  2. J.W. Stather, A.D. Wrixon, J.R. Simmonds, The risks of leukaemia and other cancers in Seascale from radiation exposure, NRPB-R171, (1984).

    Google Scholar 

  3. D. Crouch, Science and trans-science in radiation risk assessment: child cancer around the nuclear fuel reprocessing plant at Sellafield, Sci. of the Total Env., 53: 201–216 (1986).

    Google Scholar 

  4. J.W. Stather, J. Dionian, J. Brown, T.P. Fell, C.R. Muirhead, The risks of leukaemia and other cancers in Seascale from radiation exposure, Addendum to report R171, NRPB-171 Addendum, (1986).

    Google Scholar 

  5. Committee on Medical Aspects of Radiation in the Environment (COMARE), First Report, The implications of the new data on the releases from Sellafield in the 1950’s for the conclusions of the Report on the Investigation of the Possible Increased Incidence of Cancer in West Cumbria, HMSO, London (1986).

    Google Scholar 

  6. M.J. Gardner, A.J. Hall, S. Downes, J.D. Terrell, Follow up study of children born elsewhere but attending schools in Seascale, West Cumbria (schools cohort), Br. Med. J., 295: 819–822 (1987).

    Google Scholar 

  7. M.J. Gardner, A.J. Hall, S. Downes, J.D. Terrell, Follow up study of children born to mothers resident in Seascale, West Cumbria (birth cohort), Br. Med. J., 295: 822–827 (1987).

    Google Scholar 

  8. M.A. Heasman, I.W. Kemp, J.D. Urquhart, R. Black, Childhood leukaemia in Northern Scotland, Lancet, 1: 266 (1986).

    Google Scholar 

  9. E. Roman, V. Beral, L. Carpenter, A. Watson, C. Barton, H. Ryder, D.L. Aston, Childhood leukaemia in the West Berkshire and Basingstoke and North Hampshire District Health Authorities in relation to nuclear establishments in the vicinity, Br. Med J., 294: 597–602 (1987).

    Google Scholar 

  10. Committee on Medical Aspects of Radiation in the Environment (COMARE), Second Report, Investigation of the possible increased incidence of leukaemia in young people near the Dounreay nuclear establishment, Caithness, Scotland, HMSO, London (1988).

    Google Scholar 

  11. Committee on Medical Aspects of Radiation in the Environment (COMARE), Third Report, Report on the incidence of childhood cancer in the West Berkshire and North Hampshire Area, in which are situated the Atomic Weapons Research Establishment, Aldermaston and the Royal Ordnance Factory, Burghfield, HMSO, London (1989).

    Google Scholar 

  12. M.D. Hill, J.R. Cooper, Radiation doses to members of the population of Thurso, NRPB-R195, (1986).

    Google Scholar 

  13. J. Dionian, C.R. Muirhead, S.L. Wan, A.D. Wrixon, The risks of leukaemia and other cancers in Thurso from radiation exposure, NRPB-R196, (1986).

    Google Scholar 

  14. J. Dionian, S.L. Wan, A.D. Wrixon, Radiation doses to members of the public around AWRE Aldermaston, ROF Burghfield and AERE Harwell, NRPB-R202, (1987).

    Google Scholar 

  15. S.L. Wan, A.D. Wrixon, Radiation doses from coal-fired plants in Oxfordshire and Berkshire, NRPB-R203, (1988).

    Google Scholar 

  16. P.J. Cook-Mozaffari, F.L. Ashwood, T. Vincent, D. Forman, M. Alderson, Cancer incidence and mortality in the vicinity of nuclear installations England and Wales 1959–80 Studies on Medical and Population Subjects No 51, HMSO, London (1987).

    Google Scholar 

  17. D. Forman, P. Cook-Mozaffari, S. Darby, G. Davy, I. Stratton, R. Doll, M. Pike, Cancer near nuclear installations, Nature, 329: 499–505 (1987).

    Article  Google Scholar 

  18. R. Wakeford, K. Binks, D. Wilkie, Childhood leukaemia and nuclear installations, J. R. Statist. Soc. A., 152: 61–86 (1989).

    Google Scholar 

  19. B. MacMahon, Leukaemia clusters around nuclear facilities in Britain, Cancer Causes Control, 3: 283–288 (1992).

    Google Scholar 

  20. P. Cook-Mozaffari, S.C. Darby, R. Doll, D. Forman, C. Hermon, M.C. Pike, T.J. Vincent, Geographical variation in mortality from leukaemia and other cancers in England and Wales in relation to proximity to nuclear installations, Br. J. Cancer, 59: 476–485 (1989).

    Google Scholar 

  21. P. Cook-Mozaffari, S. Darby, R. Doll, Cancer near potential sites of nuclear installations, Lancet, 2: 1145–1147 (1989).

    Google Scholar 

  22. M. J. Gardner, Review of reported increases of childhood cancer rates in the vicinity of nuclear installations in the UK, J. R. Statist. Soc. A., 152: 307–325 (1989).

    Google Scholar 

  23. J.W. Stather, R.H. Clarke, K.P. Duncan, The risk of childhood leukaemia near nuclear establishments, NRPB-R215, HMSO, Chilton (1988).

    Google Scholar 

  24. T.E. Wheldon, The assessment of risk of radiation-induced childhood leukaemia in the vicinity of nuclear installations, J. R. Statist. Soc. A., 152: 327–339 (1989).

    Google Scholar 

  25. S.C. Darby, R. Doll, Fallout, radiation doses near Dounreay, and childhood leukaemia, Br. Med. J., 294: 603–607 (1987).

    Google Scholar 

  26. S.C. Darby, J.H. Olsen, R. Doll, B. Thakrar, P. deN. Brown, H.H. Storn, L. Barlow, F. Langmark, L. Teppo, H. Tulinius, Trends in childhood leukaemia in the Nordic countries in relation to fallout from atmospheric nuclear weapons testing, Br. Med. J., 304: 1005–9 (1992).

    Google Scholar 

  27. S. Jablon, Z. Hrubec, J.D. Boice, Cancer in populations living near nuclear facilities, A survey of mortality nationwide and incidence in two states, JAMA, 265: 1403–1408 (1991).

    Article  Google Scholar 

  28. C. Hill, A. Laplanche, Overall mortality and cancer mortality around French nuclear sites, Nature, 347: 755–757 (1990).

    Article  Google Scholar 

  29. J-N. Hattchouel, A. Laplanche, C. Hill, Leukaemia mortality around French nuclear sites, Br. J. Cancer, 71: 651–653 (1995).

    Google Scholar 

  30. J. Michaelis, B. Keller, G. Haaf, E. Kaatsch, Incidence of childhood malignancies in the vicinity of (West) German nuclear power plants, Cancer Causes Control, 3: 255–263 (1992).

    Article  Google Scholar 

  31. J.R. McLaughlin, E.A. Clarke, E.D. Nishri, T.W. Anderson, Childhood leukaemia in the vicinity of Canadian nuclear facilities, Cancer Causes Control, 4: 51–58 (1993).

    Article  Google Scholar 

  32. L.A. Walter, B. Turnbull, G. Gustafsson, U. Hjlmars, B. Anderson, Detection and assessment of clusters of a disease and application to nuclear power plant facilities and childhood leukaemia in Sweden, Stat. Med., 14: 3–16 (1995).

    Google Scholar 

  33. J-F. Viel, D. Pobel, A. Carre, Incidence of leukaemia in young people around the La Hague nuclear waste reprocessing plant: a sensitivity analysis, Stat. Med., 14: 2459–2472 (1995).

    Google Scholar 

  34. J.F. Bithell, S.J. Dutton, G.J. Draper, N.M. Neary, Distribution of childhood leukaemias and non-Hodgkin’s lymphoma near nuclear installations in England and Wales, Br. Med. J., 309: 501–505 (1994).

    Google Scholar 

  35. M.J. Gardner, M.P. Snee, A.J. Hall, C.A. Powell, S. Downes, J.D. Terrell, Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria, Br. Med. J., 300: 423–9 (1990).

    Google Scholar 

  36. S. Abrahamson, Childhood leukaemia at Sellafield, Radial. Res., 123: 237–8 (1990).

    Google Scholar 

  37. H.J. Evans, Ionising radiations from nuclear establishments and childhood leukaemias’ an enigma, BioEssays, 12: 541–9 (1990).

    Article  Google Scholar 

  38. S.A. Narod, Radiation genetics and childhood leukaemia, Eur. J. Cancer, 26: 661–4 (1990).

    Google Scholar 

  39. J.V. Neel, Update on the genetic effects of ionizing radiation, JAMA, 266: 698–701 (1991).

    Article  Google Scholar 

  40. K. Sankaranarayanan, Ionising radiation and genetic risks, IV, Current methods, estimates of risk of Mendelian disease, human data and lessons from biochemical and molecular studies of mutations, Mutat. Res., 258: 75–97 (1991).

    Google Scholar 

  41. K.F. Baverstock, DNA instability, paternal irradiation and leukaemia in children around Sellafield, Int. J. Radiat. Biol., 60: 581–95 (1991).

    Google Scholar 

  42. International Commission on Radiological Protection, 1990 Recommendations of the International Commission on Radiological Protection (ICRP Publication 60), Ann ICRP, 21: 1–3 (1991).

    Google Scholar 

  43. A.B. Hill, The environment and disease: association or causation? Proc. R. Soc. Med., 58: 295–300 (1965).

    Google Scholar 

  44. T. Ishimaru, M. Ichimaru, M. Mikami, Leukaemia incidence among individuals exposed in utero, children of atomic bomb survivors, and their controls: Hiroshima and Nagasaki 1945–79, Radiation Effects Research Foundation, Hiroshima, Tech Rep 11-81 (1981).

    Google Scholar 

  45. K.S.B. Rose, Pre-1989 epidemiological surveys of low-level dose pre-conception irradiation, J. Radiol. Prot., 10: 177–184 (1990).

    Article  Google Scholar 

  46. X.O. Shu, Y.T. Gao, L.A. Brinton, M.S. Linet, J.T. Tu, W. Zheng, J.F. Fraumeni, A population-based case-control study of childhood leukaemia in Shanghai, Cancer, 62: 635–644 (1988).

    Google Scholar 

  47. X. Shu, F. Jin, M.S. Linet, W. Zheng, J. Clemens, J. Mills, Y.T. Gao, Diagnostic X-ray and ultrasound exposure and risk of childhood cancer, Br. J. Cancer, 70: 531–536 (1994).

    Google Scholar 

  48. X. Shu, G.H. Reaman, B. Lampkin, H.N. Sather, T.W. Pendergrass, L.L. Robison & for the investigators of the Children’s Cancer Group, Association of paternal diagnostic X-ray exposure with risk of infant leukaemia, Cancer Epidemiol. Biomarkers Prev., 3: 645–653 (1994).

    Google Scholar 

  49. Y. Yoshimoto, J.V. Neel, W.J. Schull, H. Kato, M. Soda, R. Eto, K. Mabuchi, Malignant tumours during the first 2 decades of life in the offspring of atomic bomb survivors, Am. J. Hum. Genet., 46: 1041–1052 (1990).

    Google Scholar 

  50. M.P. Little, A comparison between the risks of childhood leukaemia from parental exposure to radiation in the Sellafield workforce and those displayed among the Japanese bomb survivors, J. Radiol. Prot., 10: 185–198 (1990).

    Article  Google Scholar 

  51. M.P. Little, A comparison of the apparent risks of childhood leukaemia from parental exposure to radiation in the six months prior to conception in the Sellafield workforce and the Japanese bomb survivors, J. Radiol. Prot., 11: 77–90 (1991).

    Google Scholar 

  52. J.D. Urquhart, R.J. Black, M.J. Muirhead, L. Sharp, M. Maxwell, O.B. Eden, D.A. Jones, Case-control study of leukaemia and non-Hodgkin’s lymphoma in children in Caithness near the Dounreay nuclear installation, Br. Med. J., 302: 687–692 (1991).

    Google Scholar 

  53. P.A. McKinney, F.E. Alexander, R.A. Cartwright, L. Parker, Parental occupations of children with leukaemia in West Cumbria, North Humberside and Gateshead, Br. Med. J., 302: 681–687 (1991).

    Google Scholar 

  54. J.R. McLaughlin, T.W. Anderson, E.A. Clarke, W. King, Occupational exposure of fathers to ionising radiation and the risk of leukaemia in offspring — a case-control study, AECB Report INFO-0424 (Ottawa Atomic Energy Control Board), (1992).

    Google Scholar 

  55. J.R. McLaughlin, W.D. King, T.W. Anderson, E.A. Clarke, J.P. Ashmore, Paternal radiation exposure and leukaemia in offspring: the Ontario case-control study, Br. Med. J., 307: 959–966 (1993).

    Google Scholar 

  56. M.P. Little, A comparison of the risks of leukaemia in the offspring of the Japanese bomb survivors and those of the Sellafield workforce with those in the offspring of the Ontario and Scottish workforces, J. Radiol. Prot., 13: 161–175 (1993).

    Google Scholar 

  57. L.J. Kinlen, K. Clarke, A. Balkwill, Paternal preconceptional radiation exposure in the nuclear industry and leukaemia and non-Hodgkin’s lymphoma in young people in Scotland, Br. Med. J., 306: 1153–1158 (1993).

    Google Scholar 

  58. L. Parker, A.W. Craft, J. Smith, H. Dickinson, R. Wakeford, K. Binks, D. McElvenny, L. Scott, A. Slovak, Geographical distribution of preconceptional radiation doses to fathers employed at the Sellafield nuclear installation, West Cumbria, Br. Med. J., 307: 966–971 (1993).

    Google Scholar 

  59. L.J. Kinlen, Can paternal preconceptional radiation account for the increase of leukaemia and non-Hodgkin’s lymphoma in Seascale? Br. Med. J., 306: 1718–1721 (1993).

    Google Scholar 

  60. Health and Safety Executive, HSE Investigation of leukaemia and other cancers in the children of male workers at Sellafield, HSE, London (1993).

    Google Scholar 

  61. Health and Safety Executive, HSE Investigation of leukaemia and other cancers in the children of male workers at Sellafield: Review of the results published in October 1993, HSE, London (1994).

    Google Scholar 

  62. M. Andersson, K. Juel, Y. Ishikawa, H.H. Storm, Effects of preconceptional irradiation on mortality and cancer incidence in the offspring of patients given injections of Thorotrast, J. Natl. Cancer Inst., 86: 1866–1870 (1994).

    Google Scholar 

  63. M.P. Little, R. Wakeford, M.W. Charles, A comparison of the risks of leukaemia in the offspring of the Sellafield workforce born in Seascale and those born elsewhere in West Cumbria with the risks in the offspring of the Ontario and Scottish workforces and the Japanese bomb survivors, J. Radiol. Prot., 14: 187–201 (1994).

    Google Scholar 

  64. M.P. Little, R. Wakeford, M.W. Charles, M. Andersson, A comparison of the risks of leukaemia and non-Hodgkin’s lymphoma in the first generation offspring (F1) of the Danish Thorotrast patients with those observed in other studies of parental preconception irradiation, J. Radiol. Prot., 16: 25–36 (1996).

    Google Scholar 

  65. E. Roman, A. Watson, V. Beral, S. Buckle, D. Bull, K. Baker, H. Ryder, C. Barton, Case-control study of leukaemia and non-Hodgkin’s lymphoma among children aged 0–4 years living in West Berkshire and North Hampshire health districts, Br. Med. J., 306: 615–621 (1993).

    Article  Google Scholar 

  66. G.J. Draper, C.A. Stiller, R.A. Cartwright, A.W. Craft, T.J. Vincent, Cancer in Cumbria and in the vicinity of the Sellafield nuclear installation, 1963–90, Br. Med. J., 306: 89–94, 761 (1993).

    Google Scholar 

  67. A.W. Craft, L. Parker, S. Openshaw, M. Charlton, J. Newall, J.M. Birch, V. Blair, Cancer in young people in the North of England 1968–85: analysis by census wards, J. Epidemiol. Comm. Health, 47: 109–115 (1993).

    Article  Google Scholar 

  68. R. Wakeford, L. Parker, Leukaemia and non-Hodgkin’s lymphoma in young persons resident in small areas of West Cumbria in relation to paternal preconceptional irradiation, Br. J. Cancer, 73: 672–679 (1996).

    Google Scholar 

  69. V. Beral, Leukaemia and nuclear installations: occupational exposure of fathers to radiation may be the explanation, Br. Med. J., 300: 411–412 (1990).

    Google Scholar 

  70. W.L. Russell, X-ray induced mutations in mice, Cold Spring Harbour Symp Quant. Biol., 16: 327–336 (1951).

    Google Scholar 

  71. K.G. Luning, A.G. Searle, Estimates of the genetic risks from ionising radiation, Mutat. Res., 12: 291–304 (1971).

    Google Scholar 

  72. W.L. Russell, L.B. Russell, E.M. Kelly, Radiation dose rate and mutation frequency, Science, 128: 1546–1550 (1958).

    Google Scholar 

  73. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, effects and risks of ionising radiation (UNSCEAR 1988 Report), New York, United Nations, (1988).

    Google Scholar 

  74. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionising radiation (UNSCEAR 1993 Report), New York, United Nations, (1993).

    Google Scholar 

  75. J.V. Neel, W.J. Schull, A.A. Awa. C. Satoh, H. Kato, M. Otake, Y. Yoshimoto, The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans, Am. J. Hum. Genet., 46: 1053–72 (1990).

    Google Scholar 

  76. J.V. Neel, S.E. Lewis, The comparative radiation genetics of humans and mice, Annu. Rev. Genet., 24: 327–62 (1990).

    Article  Google Scholar 

  77. U.K. Ehling, Genetic risk assessment, Annu. Rev. Genet., 25: 255–89 (1991).

    Article  Google Scholar 

  78. K. Sankaranarayanan, Genetics effects of ionising radiation in man, Ann. ICRP, 22: 75–94 (1991).

    Article  Google Scholar 

  79. R. Wakeford, E.J. Tawn, D.M. McElvenny, L.E. Scott, K. Binks, L. Parker, H. Dickinson, J. Smith, The descriptive statistics and health implications of occupational radiation doses received by men at the Sellafield nuclear installation before the conception of their children, J. Radiol. Prot., 14: 3–16 (1994).

    Google Scholar 

  80. R. Wakeford, E.J. Tawn, D.M. McElvenny, K. Binks, L.E. Scott, L. Parker, The Seascale childhood leukaemia cases — the mutation rates implied by paternal preconceptional radiation doses, J. Radiol. Prot., 14: 17–24 (1994).

    Google Scholar 

  81. E.J. Tawn, Leukaemia and Sellafield: is there a heritable link?, J. Med. Genet., 32: 251–256 (1995).

    Google Scholar 

  82. W.L. Russell, E.M. Kelly, Mutation frequencies in male mice and the estimation of genetic hazards of radiation in man, Proc. Natl. Acad. Sci. USA, 79: 542–4 (1982).

    Google Scholar 

  83. K. Sankaranarayanan, Ionising radiation and genetic risks, III, Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction by radiation, Mutat. Res., 258: 75–97 (1991).

    Google Scholar 

  84. J. Thacker, Radiation-induced mutation in mammalian cells at low doses and dose rates, Adv. Radiat. Bioi., 16: 77–124 (1992).

    Google Scholar 

  85. C.A. Felix, D. D’Amico, T. Mitsudomi, M.M. Nau, F.P. Li, J.F. Jr. Fraumeni, D.E. Cole, J. McCalla, G.H. Reaman, J. Whang-Peng et al., Absence of hereditary p53 mutation in 10 familial leukaemia pedigrees, J. Clin. Invest., 90: 653–8 (1992).

    Article  Google Scholar 

  86. G.J. Draper, General overview of studies of multigeneration carcinogenesis in man, particularly in relation to exposure to chemicals, In: Perinatal and multigeneration carcinogenesis, N.P. Napalkow, J.M. Rice, L. Tomatis, H. Yamasaki, eds. Lyon: International Agency for Research on Cancer, pp275–88 (1989).

    Google Scholar 

  87. M.M. Hawkins, G.J. Draper, D.L. Winter, Cancer in the offspring of survivors of childhood leukaemia and non-Hodgkin lymphomas, Br. J. Cancer, 71: 1335–9 (1995).

    Google Scholar 

  88. C.A. Stiller, P.A. McKinney, K.J. Bunch, C.C. Bailey, I.J. Lewis, Childhood cancer in ethnic groups in Britain, a United Kingdom childrens cancer study group (UKCCSG) study, Br. J. Cancer, 64: 543–8 (1991).

    Google Scholar 

  89. R. Doll, H.J. Evans, S.C. Darby, Paternal exposure not to blame, Nature, 367: 678–80 (1994).

    Article  Google Scholar 

  90. A.M. Ford, S.A. Ridge, M.E. Cabrera, H. Mahmoud, C.M. Steel, L.C. Chan, M. Greaves, In utero rearrangements in the trithorax-related oncogene in infant leukaemias, Nature, 363: 358–60 (1993).

    Article  Google Scholar 

  91. T.H. Rabitts, Chromosomal translocations in cancer, Nature, 372: 143–9 (1994).

    Google Scholar 

  92. J.M. Adams, S. Cory, Transgenic models of tumour development, Science, 254: 1161–6 (1991).

    Google Scholar 

  93. N. Heisterkamp, G. Jenster, D. Kioussis, P.K. Pattengale, J. Groffen, Human bcr-abl gene has a lethal effect on embryogenesis, Transgenic Res., 1: 45–53 (1991).

    Google Scholar 

  94. R. Weinberg, Tumour suppressor genes, Science, 254: 1138–46 (1991).

    Google Scholar 

  95. A.G. Knudson, Hereditary cancer oncogenes, and antioncogenes, Cancer Res., 45: 1437–43 (1985).

    Google Scholar 

  96. G.M. Taylor, G.M. Birch, The hereditary basis of human leukaemia, In: Leukaemia 6th ed, E.S. Henderson, T.A. Lister, M.F. Greaves, eds. W.B. Saunders Co. USA pp 210–245 (1996).

    Google Scholar 

  97. D. Malkin, p53 and the Li-Fraumeni syndrome [Review], Cancer Genet. Cytogenet., 66: 83–92 (1993).

    Article  Google Scholar 

  98. J.V. Neel, Problem of “false positive” conclusions in genetic epidemiology: lessons from the leukaemia cluster near the Sellafield nuclear installation, Genet. Epid., 11: 213–233 (1994).

    Google Scholar 

  99. K.P. Jones, A.W. Wheater, Obstetric outcomes in West Cumberland Hospital: is there a risk from Sellafield? J. R. Soc. Med., 82: 524–7 (1989).

    Google Scholar 

  100. M. Greaves, Infant leukaemia biology, aetiology and treatment, Leukaemia, 10: 372–377 (1996).

    Google Scholar 

  101. G. de The, The etiology of Burkitťs lymphoma and the history of the shaken dogmas, Blood Cells, 19: 667–673 (1993).

    Google Scholar 

  102. M. Subar, A. Ner, G. Inghirami, D.M. Knowles, R. Dalla-Favera, Frequent c-myc oncogene activation and infrequent presence of Epstein-Barr virus genome in AIDS — associated lymphoma, Blood, 72: 667–671 (1988).

    Google Scholar 

  103. M. Tibebu, A. Polliack, Familial lymphomas, a review of the literature with report of cases in Jerusalem, Leukaemia and Lymphoma, 1: 195–201 (1990).

    Article  Google Scholar 

  104. T. Nomura, Paternal exposure to radiation and offspring cancer in mice: reanalysis and new evidences, J. Radiat. Res. Suppl., 2: 64–72 (1991).

    Google Scholar 

  105. T. Nomura, Role of DNA damage and repair in carcinogenesis, In: Environmental Mutagens and Carcinogens, T. Sugimura, S. Kondo, H. Takebe, Liss, eds New York, pp 223–230 (1982).

    Google Scholar 

  106. T. Nomura, Sensitivity of a lung cell in the developing mouse embryo to tumour induction by urethan, Cancer Res., 34: 3363–3372 (1974).

    Google Scholar 

  107. G.E. Cosgrove, P.B. Selby, A.C. Upton, T.J. Mitchell, M.H. Stell, W.L. Russell, Lifespan and autopsy findings in the first generation offspring of X-irradiated male mice, Mutat. Res., 319: 71–9 (1993).

    Google Scholar 

  108. B.M. Cattanach, G. Patrick, D. Papworth, D.T. Goodhead, T. Hacker, L. Cobb, E. Whitehill, Investigation of lung tumour induction in BALB/cJ mice following paternal X-irradiation, Int. J. Radiat. Biol., 67, 5: 607–615 (1995).

    Google Scholar 

  109. T. Nomura, Further studies on X-ray and chemically induced germ-line alternations causing tumours and malformations in mice, In: Genetic Toxicology of Environmental Chemicals, part B: Genetic Effects and Applied Mutagenesis, C. Ramel, ed Alan R. Liss, New York, pp13–20 (1986).

    Google Scholar 

  110. L. Tomatis, Transgenerational carcinogenesis: A review of the experimental and epidemiological evidence, Jpn. J. Cancer Res., 85: 443–454 (1994).

    Google Scholar 

  111. P.B. Selby, Experimental induction of dominant mutations in mammals by ionising radiations and chemicals, In: Issues and Reviews in Teratology 5, H. Kalter, ed Plenum, New York, 181–253 (1990).

    Google Scholar 

  112. V.S. Turosov, E. Cardis, Review of experiments on multigenerational carcinogenicity: of design, experimental models and analyses, In: Perinatal and Multigeneration Carcinogenesis, N.P. Napalkov, J.M. Rice, L. Tomatis, H. Yamasaki, eds IARC Lyon, pp105–120 (1989).

    Google Scholar 

  113. E.J. Hall, Radiobology for the Radiologist, J.B. Lippincott Company, New York, (1988).

    Google Scholar 

  114. D.J. Brenner, E.J. Hall, The inverse dose dose-rate effect for oncogenic transformation by neutrons and charged particles: a plausible interpretation consistent with published data, Int. J. Radiat Biol., 58: 745–58 (1990).

    Google Scholar 

  115. A.G. Searle, Mutation induction in mice, Adv. Radiat. Biol., 4: 131–207 (1974).

    Google Scholar 

  116. R. Cox, Transgeneration carcinogenesis: are there genes that break the rules? NRPB Radiol. Prot. Bull., 129: 15–23 (1992).

    Google Scholar 

  117. B.A. Dombroski, S.L. Mathias, E. Nanthakumar, A.F. Scott, H.J. Jr. Kazazian, Isolation of an active human transposable element, Science, 254: 1805–9 (1991).

    Google Scholar 

  118. Y.E. Dubrova, A.J. Jeffrey, A.M. Malashenko, Mouse minisatellite mutations induced by ionising radiation, Nature Genetics, 5: 92–94 (1993).

    Article  Google Scholar 

  119. Y.J. Fan, Z. Wang, S. Sadamoto, Y. Ninomiya, N. Kotomura, K. Kamiya, K. Dohi, R. Kominami, O. Niwa, Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus, Int. J. Radial. Biol., 68: 177–183 (1995).

    Google Scholar 

  120. Y.E. Dubrova, V.N. Nesteroc, N.G. Krouchinsky, V.A. Ostapenko, R. Nenmann, D.L. Neil, A.J. Jeffreys, Human minisatellite mutation rate after the Chernobyl accident, Nature, 380: 683–686 (1996).

    Article  Google Scholar 

  121. M. Kodaira, C. Satoh, K. Hiyama, K. Toyama, Lack of effects of atomic bomb radiation and genetic instability of tandem-repetitive elements in human germ cells, Am. J. Hum. Genet., 57: 1275–1283 (1995).

    Google Scholar 

  122. T.G. Krontiris, Minisatellites and human disease, Science, 269: 1682–1683 (1995).

    Google Scholar 

  123. G.R. Sutherland, R.N. Simmers, No statistical association between common fragile sites and non-random chromosome breakpoints in cancer cells, Cancer Genet. Cytogenet., 31: 9–15 (1988).

    Google Scholar 

  124. R.I. Richards, G.R. Sutherland, Dynamic mutations: a new class of mutations causing human disease, Cell, 70: 709–12 (1992).

    Article  Google Scholar 

  125. J.G. Hall, Genomic imprinting: Review and relevance to human diseases, Am. J. Genet., 46: 857–873 (1990).

    Google Scholar 

  126. O.A. Haas, A. Argyriou-Tirita, T. Lion, Parental origin of chromosomes involved in the translocation t(9∶22), Nature, 359: 414–6 (1992).

    Article  Google Scholar 

  127. T. Floretos, N. Heisterkamp, J. Groffen, No evidence for genomic imprinting of the human BCR gene, Blood, 83: 3441–4 (1994).

    Google Scholar 

  128. Reay v British Nuclear Fuels plc; Hope v British Nuclear Fuels plc (QBD: French J), Medical Law Reports, 5: 1–55 (1994).

    Google Scholar 

  129. R. Wakeford, E.J. Tawn, Childhood leukaemia and Sellafield: the legal cases, J. Radiol. Prot., 14: 293–316 (1994).

    Google Scholar 

  130. L.J. Kinlen, Epidemiological evidence for an infective basis in childhood leukaemia, Br. J. Cancer, 71: 1–5 (1995).

    Google Scholar 

  131. L.J. Kinlen, M. Dixon, C.A. Stiller, Childhood leukaemia and non-Hodgkin’s lymphoma near large rural construction sites, with a comparison with Sellafield nuclear site, Br. Med. J., 310: 763–768 (1995).

    Google Scholar 

  132. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionising radiation (UNSCEAR 1994 Reports), New York: United Nations, (1994).

    Google Scholar 

  133. Committee on Medical Aspects of Radiation in the Environment (COMARE), Fourth Report, The incidence of cancer and leukaemia in young people in the vicinity of the Sellafield site, West Cumbria: Further studies and an update of the situation since the publication of the report of the Black Advisory Group in 1984, HMSO, London, (1996).

    Google Scholar 

  134. J.R. Simmonds, C.A. Robinson, A. Phipps, C.R.I. Muirhead, F.A. Fry, Risks of leukaemia and other cancers in Seascale from all sources of ionising radiation exposure, NRPB-R276, (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tawn, E.J., Wakeford, R. (2002). Childhood Leukaemia and Radiation: The Sellafield Judgment. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science & Technology, vol 25. Springer, Boston, MA. https://doi.org/10.1007/0-306-47812-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47812-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45604-6

  • Online ISBN: 978-0-306-47812-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics