Skip to main content

Radionuclide Transport in Fractured Rock: an Analogy with Neutron Transport

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science & Technology ((ANST,volume 23))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murray, Raymond, L., “Understanding Radioactive Waste” 2nd Ed. Battelle Press (1985).

    Google Scholar 

  2. Bear, J., “Hydraulics of Groundwater”, McGraw-Hill (1979).

    Google Scholar 

  3. de Marsily, G. and D.F. Merriam (Eds), “Predictive geology with emphasis on nuclear waste disposal”, Pergamon Press (1982).

    Google Scholar 

  4. Javendel, I., C. Doughty and C.F. Tsang, “Groundwater Transport: Handbook of Mathematical Models”. Am. Phys. Union, Water Resources Monograph Number 10 (1984) Third printing 1987.

    Google Scholar 

  5. Bear, J., “Dynamics of Porous Media”, Dover Publications (1988).

    Google Scholar 

  6. Krauskopf, K.B., “Radioactive waste disposal and geology”, Chapman and Hall (1988).

    Google Scholar 

  7. Dagan, G., “Theory of solute transport by groundwater”, Ann. Rev. Fluid Mech. 19, 183 (1987).

    Article  MATH  ADS  Google Scholar 

  8. Taylor, G.I., “Diffusion by continuous movements”, Proc. Lond. Math. Soc. 2, 196 (1921).

    MATH  Google Scholar 

  9. Taylor, G.I., “Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube”, Proc. Roy. Soc. A219, 186 (1952).

    ADS  Google Scholar 

  10. Aris, R., “On the Dispersion of a Solute in a Fluid Flowing Through a Tube”, Proc. Roy. Soc. A235, 67 (1956).

    Article  ADS  Google Scholar 

  11. Brenner, H., “Dispersion Resulting from Flow Through Spatially Periodic Porous Media”, Phil. Trans. Roy. Soc. 297, 81 (1980).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Saffman, P.G., “Dispersion due to Molecular Diffusion and Macroscopic Mixing in Flow Through a Network of Capillaries”. J. Fluid. Mech. 7, 194 (1960).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Saffman, P.G., “A Theory of Dispersion in a Porous Medium”, J. Fluid Mech. 6, 321 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  14. Gelhar, L.W., Gutjahr, A.L. and Naff, R.L. “Stochastic Analysis of Macrodispersion in a Stratified Aquifer”. Water Resources Research 15, 1387 (1979).

    Article  ADS  Google Scholar 

  15. Gelhar, L.W. and Axness, C.L. “Three-Dimensional Stochastic Analysis of Macrodispersion in Aquifers”. Water Resources Research 19, 161 (1983).

    Article  ADS  Google Scholar 

  16. Williams, M.M.R., “Stochastic problems in the transport of radioactive nuclides in fractured rock”, Nucl. Science and Engng 112, 215 (1992).

    ADS  Google Scholar 

  17. Giddings, J. Calvin, “Dynamics of Chromatography”, Marcel Dekker (1965).

    Google Scholar 

  18. Sudicky, E.A. and Frind, E.O, “Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures”, Water Resources Research 18, 1634 (1982).

    Article  ADS  Google Scholar 

  19. de Marsily, G. “Quantitative Hydrogeology”, Academic Press (1986).

    Google Scholar 

  20. Case, K.M. and P.F. Zweifel, “Linear Transport Theory”, Addison-Wesley (1967).

    Google Scholar 

  21. Bell, G.I. and S. Glasstone, “Nuclear Reactor Theory”, Van Nostrand Reinhold Co. (1970).

    Google Scholar 

  22. Duderstadt, J.J. and W.R. Martin, “Transport Theory”, Wiley-Interscience (1979).

    Google Scholar 

  23. Robinson, P.C., “Connectivity, Flow and Transport in Network Models of Fractured Media”, AERE Report TP.1072 (1984).

    Google Scholar 

  24. Cassell, J.S and M.M.R. Williams, “An integro-differential equation arising in radionuclide transport through fractured rock”, Math. Models and Methods in Applied Sciences 3, 641 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  25. Impey, M.D. and Grindrod, “Channelling and Fickian dispersion in a fractal simulated porous medium”, INTERA report WRR/1 (1991).

    Google Scholar 

  26. Ganapol, B., “Radiative transfer in denseplant canopies with azimuthal symmetry”, Transport Theory and Statistical Physics 18, 475 (1989).

    Article  ADS  Google Scholar 

  27. Cassell, J.S. and M.M.R. Williams, “Discrete eigenvalues of the one speed transport equation for asymmetric scattering”, Ann. Nucl. Energy 19, 403 (1992).

    Article  Google Scholar 

  28. Scheidegger, A.E., “The Physics of Flow Through Porous Media”, Toronto University Press (1963).

    Google Scholar 

  29. Williams, M.M.R., “The Slowing Down and Thermalization of Neutrons”, North-Holland Pub. Co. (1966).

    Google Scholar 

  30. Williams, M.M.R., “A new model for describing the transport of radionuclides through fractured rock”, Ann. Nucl. Energy 19, 791 (1992).

    Article  Google Scholar 

  31. Williams, M.M.R., “A review of a selection of papers describing the theory of transport in anisotropic porous media”. Report to Commission of the European Communities EUR 14163 EN (1993).

    Google Scholar 

  32. Buckley, R.L, S.K. Loyalka, and M.M.R. Williams, “Numerical studies of transport in porous media”, Ann. Nucl. Energy 20, 203 (1993).

    Article  Google Scholar 

  33. Buckley, R.L, S.K. Loyalka, and M.M.R. Williams, “Numerical studies of transport in porous media II: picket fence and fracture angle models”, Ann. Nucl. Energy 20, 421 (1993).

    Article  Google Scholar 

  34. Buckley, R.L, S.K. Loyalka, and M.M.R. Williams, “Numerical studies of transport in porous media III: radioisotope migration in fracture angle formations”, Ann. Nucl. Energy 20, 5691 (1993).

    Google Scholar 

  35. Anderson, D.E, J.C. Tannehil, and R.H. Pletcher, “Computational Fluid Mechanics and Heat Transfer”, Hemisphere Publishing Corp (1984).

    Google Scholar 

  36. Smolarkiewicz, P.K., “A simple positive-definite advective scheme with small implicit diffusion”, Monthly Weather Review 111, 479 (1983).

    Article  ADS  Google Scholar 

  37. Zhang, H and Zhuang, F., “NND schemes and their applications to numerical simulation of two-and three-dimensional flows”, Advances in Appl. Mech. 29, 193 (1992).

    Article  MATH  Google Scholar 

  38. Neretnieks, I., “Predictive Geology with emphasis on nuclear waste disposal”, Edited by G. de Marsily and D.F. Merriam. p137, Pergamon Press (1982).

    Google Scholar 

  39. Gelhar, L.W, C. Welty, and K.R. Rehfeldt, “A critical review of data on field scale dispersion in aquifers”, Water Resources Research 28,1955 (1992).

    Article  ADS  Google Scholar 

  40. Sahimi, M., “Applications of Percolation Theory”, Taylor and Francis (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Williams, M.M.R. (2002). Radionuclide Transport in Fractured Rock: an Analogy with Neutron Transport. In: Advances in Nuclear Science and Technology. Advances in Nuclear Science & Technology, vol 23. Springer, Boston, MA. https://doi.org/10.1007/0-306-47810-2_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47810-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45184-3

  • Online ISBN: 978-0-306-47810-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics