Skip to main content

Trellis Coding on Fading Channels

  • Chapter
Coded Modulation Systems
  • 370 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. K. J. Larsen, “Short convolutional codes with maximal free distance for rates 1/2, 1/3, and 1/4,” IEEE Trans. Inf. Theory, IT-19(3), 371–372, May 1973.

    Google Scholar 

  2. G. C. Clark, Jr. and J. Bibb Cain, Error-control Coding for Digital Communications. Plenum, New York, 1981.

    Google Scholar 

  3. S. Lin and D. J. Costello, Jr., Error Control Coding. Prentice-Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  4. A. M. Michelson and A. H. Levesque, Error-control Techniques for Digital Communication. Wiley, New York, 1985.

    Google Scholar 

  5. J. B. Anderson and S. Mohan, Source and Channel Coding. Kluwer, Boston, 1991.

    MATH  Google Scholar 

  6. J. G. Proakis, Digital Communications, 4th. edn. McGraw-Hill, New York, 2000.

    Google Scholar 

  7. I.E. Bocharova and B. D. Kudrashov, “Rational rate convolutional codes for soft-decision Viterbi decoding,” IEEE Trans. Inf. Theory, 43(4), 1305–1313, July 1997.

    Article  MATH  Google Scholar 

  8. J. Chang, D. Hwang, and M. Lin, “Some extended results on the search for good convolutional codes,” IEEE Trans. Inf. Theory, 43(5), 1682–1697, Sept. 1997.

    MathSciNet  MATH  Google Scholar 

  9. P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with optimum distance spectrum,” IEEE Commun. Lett., 3(11), 317–319, Nov. 1999.

    Article  Google Scholar 

  10. P. K. Frenger, P. Orten, and T. Ottosson, “Comments and additions to recent papers on new convolutional codes,” IEEE Trans. Inf. Theory, 47(3), 1199–1201, Mar. 2001.

    Article  MathSciNet  Google Scholar 

  11. P. Frenger, P. Orten, T. Ottosson, and A. Svensson, “Multi-rate convolutional codes,” Tech. Rep. R021/1998, Department of Signals and Systems, Chalmers University of. Technology, Göteborg, Sweden, Apr. 1998.

    Google Scholar 

  12. J. P. Odenwalder, Optimal Decoding of Convolutional Codes, PhD thesis, School Eng. Appl. Sci., Univ. California, Los Angeles, CA, 1970.

    Google Scholar 

  13. P. J. Lee, “New short constraint length rate 1/N convolutional codes which minimize the required SNR for given desired bit error rates,” IEEE Trans. Commun., COM-33(2), 171–177, Feb. 1985.

    Google Scholar 

  14. P. J. Lee, “Further results on rate 1/N convolutional code constructions with minimum required SNR criterion,” IEEE Trans. Commun., COM-34(4), 395–399, Apr. 1986.

    Google Scholar 

  15. D. M. Mandelbaum, “An adaptive-feedback coding scheme using incremental redundancy,” IEEE Trans. Inf. Theory, IT-20(3), 388–389, May 1974.

    MathSciNet  Google Scholar 

  16. J. B. Cain, G. C. Clark, and J. M. Geist, “Punctured convolutional codes of rate (n−1)/n and simplified maximum likelihood decoding,” IEEE Trans. Inf. Theory, IT-25(1), 97–100, Jan. 1979.

    MathSciNet  Google Scholar 

  17. Y. Yasuda, “Development of variable-rate Viterbi decoder and its performance characteristics,” in Proc. 6th Int. Conf. Digit. Satellite Commun., Phoenix, AZ, Sept. 1983, XII-24–XII-31.

    Google Scholar 

  18. Y. Yasuda, K. Kashiki, and Y. Hirata, “High rate punctured convolutional codes for soft decision Viterbi decoding,” IEEE Trans. Commun., COM-32(3), 315–319, Mar. 1984.

    Google Scholar 

  19. J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their performance,” IEEE Trans. Commun., 36(4), 389–400, Apr. 1988.

    Article  Google Scholar 

  20. P. K. Frenger, P. Orten, T. Ottosson, and A. B. Svensson, “Rate-compatible convolutional codes for multirate DS-CDMA systems,” IEEE Trans. Commun., 47(6), 828–836, June 1999.

    Article  Google Scholar 

  21. L. H. C. Lee, “New rate-compatible punctured convolutional codes for Viterbi decoding,” IEEE Trans. Commun., 42(12), 3073–3079, Dec. 1994.

    Article  Google Scholar 

  22. S. Kallel and D. Haccoun, “Generalized type II hybrid ARQ scheme using punctured convolutional coding,” IEEE Trans. Commun., 38(11), 1938–1946, Nov. 1990.

    Article  Google Scholar 

  23. S. Kallel, “Analysis of a type II hybrid ARQ scheme with code combining,” IEEE Trans. Commun., 38(8), 1133–1137, Aug. 1990.

    Article  Google Scholar 

  24. Z. Lin and A. Svensson, “New rate-compatible repetition convolutional codes,” IEEE Trans. Inf. Theory, 46(7), 2651–2659, Nov. 2000.

    MathSciNet  MATH  Google Scholar 

  25. Z. Lin, “Rate compatible convolutional codes and their application to type II hybrid ARQ transmission,” MS thesis, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden, 1998.

    Google Scholar 

  26. S. Lefrançois and D. Haccoun, “Search procedures for very low rate quasioptimal convolutional codes,” in Proc. IEEE Int. Symp. Inf. Theory, Trondheim, Norway, June 1994, p. 278.

    Google Scholar 

  27. S. Lefran00E7;ois and D. Haccoun, “Very low rate quasi-optimal convolutional codes for CDMA,” in Proc. Canadian Conf. Electr. Computer Eng., Halifax, Canada, Sept. 1994, 210–213.

    Google Scholar 

  28. P. Frenger, P. Orten, and T. Ottosson, “Code-spread CDMA using maximum free distance low-rate convolutional codes,” IEEE Trans. Commun., 48(1), 135–144, Jan. 2000.

    Article  Google Scholar 

  29. A. Mehrotra, GSM System Engineering, Artech House, Boston, 1997.

    Google Scholar 

  30. T. Ojanperä and R. Prasad, Wideband CDMA for Third Generation Mobile Communications, Artech House, Boston, 1998.

    Google Scholar 

  31. J. P. Castro, The UMTS Network and Radio Access Technology: Air Interface Techniques for Future Mobile Systems. Wiley, New York, 2001.

    Google Scholar 

  32. E. Biglieri, D. Divsalar, P. McLane, and M. K. Simon, Introduction to Trellis-coded Modulation with Applications. Macmillan, New York, 1991.

    MATH  Google Scholar 

  33. S. H. Jamali and T. Le-Ngoc, Coded-modulation Techniques for Fading Channels. Kluwer, Boston, 1994.

    MATH  Google Scholar 

  34. C. Schlegel and D. J. Costello, Jr., “Bandwidth efficient coding for fading channels: code construction and performance analysis,” IEEE J. Sel. Areas Communs., 7(9), 1356–1368, Dec. 1989.

    Google Scholar 

  35. C.-E. W. Sundberg and J. Hagenauer, “Hybrid trellis-coded 8/4 PSK systems,” IEEE Trans. Commun., 38(5), 602–614, May 1990.

    Article  Google Scholar 

  36. E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., 40(5), 873–884, May 1992.

    Article  MATH  Google Scholar 

  37. E. Biglieri and M. Luise (eds), Coded Modulation and Bandwidth-efficient Transmission. Elsevier, Amsterdam, 1992.

    Google Scholar 

  38. S. B. Wicker, Error Control Systems for Digital Communication and Storage. Prentice-Hall, Englewood Cliffs, NJ, 1995.

    MATH  Google Scholar 

  39. J. K. Cavers and P. Ho, “Analysis of the error performance of trellis-coded modulations in Rayleigh-fading channels,” IEEE Trans. Commun., 40(1), 74–83, Jan. 1992.

    Article  MATH  Google Scholar 

  40. J. Huang and L. L. Campbell, “Trellis coded MDPSK in correlated and shadowed Ricean fading channels,” IEEE Trans. Veh. Tech., 40(4), 786–797, Nov. 1991.

    Article  Google Scholar 

  41. D. Divsalar and M. K. Simon, “Performance of trellis coded MDPSK on fast fading channels,” in Proc. Int. Conf. Communs., Boston, MA, June 1989, 261–267.

    Google Scholar 

  42. F. Edbauer, “Performance of interleaved trellis-coded differential 8-PSK modulation over fading channels,” IEEE J. Sel. Areas Communs., 7(9), 1340–1346, Dec. 1989.

    Google Scholar 

  43. R. G. McKay, P. J. McLane, and E. Biglier, “Error bounds for trellis-coded MPSK on a fading mobile satellite channel,” IEEE Trans. Commun., 39(12), 1750–1761, Dec. 1991.

    Article  Google Scholar 

  44. K. Chan and A. Bateman, “The performance of reference-based M-ary PSK with trellis coded modulation in Rayleigh fading,” IEEE Trans. Veh. Tech., 41(2), 190–198, May 1992.

    Article  Google Scholar 

  45. D. Divsalar and M. K. Simon, “The design of trellis coded MPSK for fading channels: set partitioning for optimum code design,” IEEE Trans. Commun., 36(9), 1013–1021, Sept. 1988.

    Google Scholar 

  46. D. Divsalar and M. K. Simon, “Multiple trellis coded modulation MTCM,” IEEE Trans. Commun., 36(4), 410–419, Apr. 1988.

    Article  Google Scholar 

  47. N. Seshadri and C.-E. W. Sundberg, “Multilevel trellis coded modulations for the Rayleigh fading channel,” IEEE Trans. Commun., 41(9), 1300–1310, Sept. 1993.

    Article  MATH  Google Scholar 

  48. G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inf. Theory, 44(3), 927–946, May 1998.

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Seshadri and C.-E. W. Sundberg, “Multi-level trellis coded modulations with large time diversity for the Rayleigh fading channel,” in Proc. Annual Conf. Inf. Sciences Sys, Princeton, NJ, Mar. 1990, 853–857.

    Google Scholar 

  50. R. C. Dixon, Spread Spectrum System with Commercial Applications, 3rd edn. Wiley, New York, 1994.

    Google Scholar 

  51. S. Glisic and B. Vucetic, Spread Spectrum CDMA System for Wireless Communications. Artech House, Boston, 1997.

    Google Scholar 

  52. M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Communications Handbook, revised edn. McGraw-Hill, New York, 1994.

    Google Scholar 

  53. A. J. Viterbi, CDMA Principles of Spread Spectrum Communication. Addison-Wesley, Reading, 1995.

    MATH  Google Scholar 

  54. S. Verdú, Multiuser Detection. Cambridge University Press, Cambridge, UK, 1998.

    MATH  Google Scholar 

  55. A. J. Viterbi, “Very low rate convolutional codes for maximum theoretical performance of spread-spectrum multiple-access channels,” IEEE J. Sel. Areas Communs., 8(4), 641–649, May 1990.

    Google Scholar 

  56. J. Y. N. Hui, “Throughput analysis for code division multiple accessing of the spread spectrum channel,” IEEE J. Sel. Areas Communs., SAC-2(4), 482–486, July 1984.

    MathSciNet  Google Scholar 

  57. A. J. Viterbi, “Orthogonal tree codes for communication in the presence of white Gaussian noise,” IEEE Trans. Commun., COM-15(4), 238–242, Apr. 1967.

    Google Scholar 

  58. R. F. Ormondroyd and J. J. Maxey, “Performance of low-rate orthogonal convolutional codes in DS-CDMA applications,” IEEE Trans. Veh. Tech., 46(5), 320–328, May 1997.

    Google Scholar 

  59. K. Rikkinen, “Comparison of very low rate coding methods for CDMA radio communication systems,” in Proc. IEEE Int. Symp. Spread Spectrum Techniques Appl., Oulu, Finland, Sept. 1994, 268–272.

    Google Scholar 

  60. Y. M. Kim and B. D. Woerner, “omparison of trellis coding and low rate convolutional codes for CDMA,” in Proc. IEEE Military Commun. Conf., Forth Monmouth, NJ, 1994, 765–769.

    Google Scholar 

  61. P. K. Frenger, P. Orten, and T. Ottosson, “Code-spread CDMA with interference cancellation,” IEEE J. Sel. Areas in Communs., 17(12), 2090–2095, Dec. 1999.

    Google Scholar 

  62. D. Haccoun, S. Lefrançois, and E. Mehn, “An analysis of the CDMA capacity using a combination of low rate convolutional codes and PN sequence,” in Proc. Canadian Conf. Electr. Comp. Eng., 1, 32–35, 1996.

    Google Scholar 

  63. D. Haccoun and Z. Gherbi, “On the application of very low rate error control coding to CDMA,” in Proc. Canadian Conf. on Electr. Comp. Eng., 2, 466–469, 1997.

    Google Scholar 

  64. G. D. Boudreau, D. D. Falconer, and S. A. Mahmoud, “A comparison of trellis coded versus convolutionally coded spread-spectrum multiple-access systems,” IEEE J. Sel. Areas Communs., 8(4), 628–640, May 1990.

    Google Scholar 

  65. A. Persson, “On convolutional codes and multi-carrier techniques for CDMA systems,” Tech. Rep. 423L, Techn. licentiate thesis, Department of Signals and Systems, Chalmers University of Technology, Göbteborg, Sweden, Jan. 2002.

    Google Scholar 

  66. J. Lassing, “Aspects of coding in communication systems,” Tech. Rep. 424L, Techn. licentiate thesis, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden, Jan. 2002.

    Google Scholar 

  67. C. F. Leanderson, O. Edfors, T. Maseng, and T. Ottosson, “On the performance of turbo codes and convolutional codes at low rate,” in Proc. IEEE Veh. Tech. Conf., Amsterdam, The Netherlands, Sept. 1999, 1560–1564.

    Google Scholar 

  68. C. F. Leanderson, J. Hokfelt, O. Edfors, and T. Maseng, “On the design of low rate turbo codes,” in Proc. IEEE Veh. Tech. Conf., Tokyo, Japan, May 2000, 1200–1204.

    Google Scholar 

  69. D. J. van Wyk and L. P. Linde, “A turbo coded DS/CDMA system with embedded Walsh-Hadamard codewords: coder design and performance evaluation,” in Proc. IEEE Int. Symp. Spread Spectrum Techniques Appl., Sun City, South Africa, Sept. 2000, 359–363.

    Google Scholar 

  70. P. Komulainen and K. Pehkonen, “Performance evaluation of superorthogonal turbo codes in AWGN and flat Rayleigh fading channels,” IEEE J. Sel. Areas Communs., 16(2), 196–205, Feb. 1998.

    Google Scholar 

  71. N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth, “Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs,” IEEE Trans. Inform. Theory, 38(2), 509–516, Mar. 1992.

    Article  Google Scholar 

  72. J.-P. Chaib and H. Leib, “Very low rate trellis/Reed-Muller (TRM) codes,” IEEE Trans. Commun., 47(10), 1476–1487, Oct. 1999.

    Article  MATH  Google Scholar 

  73. V. Sorokine, F. R. Kschischang, and S. Pasupathy, “Gallager codes for CDMA applications. I. Generalizations, constructions, and performance bounds,” IEEE Trans. Commun., 48(10), 1660–1668, Oct. 2000.

    Article  MATH  Google Scholar 

  74. V. Sorokine, F. R. Kschischang, and S. Pasupathy, “Gallager codes for CDMA applications. II. Implementations, complexity, and system capacity,” IEEE Trans. Commun., 48(11), 1818–1828, Nov. 2000.

    MATH  Google Scholar 

  75. P. D. Papadimitriou and C. N. Georghiades, “On asymptotically optimum rate 1/n convolutional codes for a given constraint length,” IEEE Commun. Lett., 5(1), 25–27, Jan. 2001.

    Article  Google Scholar 

  76. D. J. van Wyk, I. J. Opperman, and L. P. Linde, “Low rate coding considerations for space-time coded DS/CDMA,” in Proc. IEEE Veh. Tech. Conf., Amsterdam, The Netherlands, Sept. 1999, 2520–2524.

    Google Scholar 

  77. D. J. van Wyk, I. J. Opperman, and L. P. Linde, “Performance tradeoff among spreading, coding and multiple-antenna transmit diversity for high capacity space-time coded DS/CDMA,” in Proc. IEEE Military Commun. Conf., Atlantic City, NJ, June 1999, 393–397.

    Google Scholar 

  78. D, van Wyk and P. van Rooyen, “On the performance of super-orthogonal turbo-transmit diversity for CDMA cellular communication,” in Proc. IEEE Int. Symp. Spread Spectrum Techn. Appl., Newark, NJ, Sept. 2000, 127–131.

    Google Scholar 

  79. A. Persson, J. Lassing, T. Ottosson, E. G. Ström, and A. Svensson, “Combined coding and spreading in downlink CDMA systems,” in Proc. IEEE Veh. Tech. Conf., Tokyo, Japan, May 2000, 2403–2407.

    Google Scholar 

  80. A. Persson, J. Lassing, T. Ottosson, and E. G. Ström, “On the differences between uplink and downlink transmission in code-spread CDMA systems,” in Proc. IEEE Veh. Tech. Conf., Rhodes, Greece, June 2001, 2421–2425

    Google Scholar 

  81. S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Commun. Mag., 34(10), 124–136, Oct. 1996.

    Article  Google Scholar 

  82. A. Duel-Hallen, J. Holtzman, and Z. Zvonar, “Multiuser detection for CDMA systems,” IEEE Personal Commun. Mag., 2(2), 46–58, Apr, 1995.

    Article  Google Scholar 

  83. S. Verdú, “Minimum probability of error for asynchronous Gaussian multiple-access channels,” IEEE Trans. Inf. Theory, 32(1), 85–96, Jan. 1986.

    MATH  Google Scholar 

  84. T. R. Giallorenzi and S. G, Wilson, “Multiuser ML sequence estimator for convolutionally coded asynchronous DS-CDMA systems,” IEEE Trans. Commun., 44(8), 997–1008, Aug. 1996.

    Article  MATH  Google Scholar 

  85. A.-L. Johansson, “Successive interference cancellation in DS-CDMA systems,” Tech. Rep. 344, PhD thesis, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden, 1998.

    Google Scholar 

  86. T. R. Giallorenzi and S. G. Wilson, “Suboptimum multiuser receivers for convolutionally coded asynchronous DS-CDMA systems,” IEEE Trans. Commun., 44(9), 1183–1196, Sept. 1996.

    Article  Google Scholar 

  87. M. R. Koohrangpour and A. Svensson, “Joint interference cancellation and Viterbi decoding in DS/CDMA,” in Proc. IEEE Personal, Indoor, Mobile Radio Conf., Helsingki, Finland, Sept. 1997, 1161–1165.

    Google Scholar 

  88. P. Frenger, P. Orten, and T. Ottosson, “Bit error rate calculation for nonlinear interference cancellation,” Electronics (Lett.), 35(18), 1572–1573, Sept. 1999.

    Google Scholar 

  89. G. Castagnoli, J. Ganz, and P. Graber, “Optimum cyclic redundancy-check codes with 16-bit redundancy,” IEEE Trans. Commun., 38(1), 111–114, Jan. 1990.

    Article  Google Scholar 

  90. R. A. Comroe and D. J. Costello, Jr., “ARQ schemes for data transmission in mobile radio systems,” IEEE J. Select. Areas in Commun., SAC-2(4), 472–481, July 1984.

    Google Scholar 

  91. L. R. Lugand, D. J. Costello, Jr., and R. H. Deng, “Parity retransmission hybrid ARQ using rate 1/2 convolutional codes on a nonstationary channel,” IEEE Trans. Commun., 37(7), 755–765, July 1989.

    Article  Google Scholar 

  92. B. Vucetic, “An adaptive coding scheme for time-varying channels,” IEEE Trans. Commun., 39(5), 653–663, May 1991.

    Article  Google Scholar 

  93. M. Rice and S. Wicker, “A sequential scheme for adaptive error control over slowly varying channels,” IEEE Trans. Commun., 42(4), 1533–1543, Apr. 1994.

    Google Scholar 

  94. S. Falahati, “Adaptive modulation and coding in wireless communications systems with feedback,” Tech. Rep. 434, PhD thesis, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden, Sept. 2002.

    Google Scholar 

  95. S. Falahati, T. Ottosson, A. Svensson, and Z. Lin, “Convolutional coding and decoding in hybrid type-II ARQ schemes in wireless channels,” in Proc. IEEE Veh. Tech. Conf., Houston, TX, May 1997, 2219–2224.

    Google Scholar 

  96. R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press, New York, 1999.

    Google Scholar 

  97. M. H. Howard and J. K. Wolf, “On tailbiting convolutional codes,” IEEE Trans. Commun., 34(2), 104–111, Feb. 1986.

    MATH  Google Scholar 

  98. R. V. Cox and C.-E. W. Sundberg, “An efficient adaptive circular Viterbi algorithm for decoding generalized tailbiting convolutional codes,” IEEE Trans. Veh. Tech., 43(1), 57–68, Feb. 1994.

    Article  Google Scholar 

  99. S. Kallel, “Complementary punctured convolutional (CPC) codes and their use in hybrid ARQ schemes,” in Proc. IEEE Pacific Rim Conf. Commun., Comp. Sig. Proc., 1993, pp. 186–189.

    Google Scholar 

  100. S. Kallel, “A variable-redundancy hybrid ARQ scheme using invertible convolutional codes,” in Proc. IEEE Veh. Tech. Conf., Stockholm, Sweden, June 1994, 1417–1420.

    Google Scholar 

  101. D. N. Rowitch and L. B. Milstein, “On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes,” IEEE Trans. Commun., 48(6), 948–959, June 2000.

    Article  Google Scholar 

  102. C.-F. Law, C. H. Lau, and T.-M. Ko, “A modified adaptive hybrid FEC/ARQ protocol using turbo codes with incremental redundancy transmission,” in Proc. IEEE Veh. Tech. Conf., Amsterdam, The Netherlands, Sept. 1999, 1670–1674.

    Google Scholar 

  103. K. S. Chan, L. Ping, and S. Chan, “Adaptive type II hybrid ARQ scheme using zigzag code,” Electronics (Lett.), 35(24), 2102–2104, Nov. 1999.

    Google Scholar 

  104. U. H.-G. Kressel and P. A. M. Buné, “Adaptive forward error correction for fast data transmission over the mobile radio channel,” in Proc. EUROCON, Stockholm, Sweden, June 1988, 170–173.

    Google Scholar 

  105. C. F. Bradshaw and D. Wiggert, “Performance of type II hybrid ARQ systems using concatenated convolutional and Reed-Solomon codes,” in Proc. Tactical Commun. Conf., 1990, 499–514.

    Google Scholar 

  106. S. Kallel, “Sequential decoding with an efficient incremental redundancy ARQ scheme,” IEEE Trans. Commun., 40(10), 1588–1593, Oct. 1992.

    Article  MATH  Google Scholar 

  107. S. Kallel and D. Haccoun, “Sequential decoding with ARQ and code combining: a robust hybrid FEC/ARQ system,” IEEE Trans. Commun., 36(7), 773–780, July 1988.

    Article  Google Scholar 

  108. S. Kallel and D. Haccoun, “Sequential decoding with an efficient partial retransmission ARQ strategy,” IEEE Trans. Commun., 39(2), 208–213, Feb. 1991.

    Article  Google Scholar 

  109. P. Orten, “Channel coding and multiuser detection for CDMA and wireless communications,” Tech. Rep. 372, PhD thesis, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden, 1999.

    Google Scholar 

  110. S. Falahati and A. Svensson, “Hybrid type-II ARQ schemes with adaptive modulation systems for wireless channels,” Proc. IEEE Veh. Tech. Conf., Amsterdam, The Netherlands, Sept. 1999, 2691–2695.

    Google Scholar 

  111. H. Stenhoff, C. Lindstrand, M. Johansson, U. Hansson, and S. Sjöberg, “Adaptive coded modulation for wireless packet data systems,” Proc. IEEE Veh. Tech. Conf., Amsterdam, The Netherlands, Sept. 1999, 1790–1794.

    Google Scholar 

  112. S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive modulation: a unified view,” IEEE Trans. Commun., 49(9), 1561–1571, Sept. 2001.

    MATH  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Trellis Coding on Fading Channels. In: Wolf, J.K., McEliece, R.J., Proakis, J., Tranter, W.H. (eds) Coded Modulation Systems. Information Technology: Transmission, Processing and Storage. Springer, Boston, MA. https://doi.org/10.1007/0-306-47792-0_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47792-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47279-4

  • Online ISBN: 978-0-306-47792-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics