Skip to main content

PRS Coded Modulation

  • Chapter
Coded Modulation Systems
  • 377 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. References marked with an asterix are recommended as supplementary reading. J. B. Anderson, Digital Transmission Engineering. IEEE Press, New York, 1999.

    Google Scholar 

  2. A. Lender, “The duobinary technique for high speed data transmission,” IEEE Trans. Commun. Tech., 82, 214–218, 1963.

    Google Scholar 

  3. E. R. Kretzmer, “Generalization of a technique for binary data communication,” IEEE Trans. Commun. Tech., COM-14, 67–68, 1966.

    Google Scholar 

  4. S. Pasupathy, “Correlative coding: a bandwidth-efficient signaling scheme,” IEEE Commun. Mag., 15, 4–11, 1977.

    Article  Google Scholar 

  5. A. Said, “Design of optimal signals for bandwidth-efficient linear coded modulation,” PhD Thesis, Department of Electrical, Computer and Systems Engineering, Rensselaer Poly. Inst., Troy, NY, Feb. 1994; see also “Tables of optimal partial-response trellis modulation codes,” Commun., Inf. Voice Processing Report Series, Report TR93-3, ibid., Sept. 1993.

    Google Scholar 

  6. A. Said and J. B. Anderson, “Bandwidth-efficient coded modulation with optimized linear partial-response signals,” IEEE Trans. Inf. Theory, IT-44, 701–713, Mar. 1998.

    MathSciNet  Google Scholar 

  7. D. G. Luemberger, Linear and Nonlinear Programming, 2nd edn. Addison-Wesley, Reading, Mass., 1984.

    Google Scholar 

  8. K. Balachandran, “Mismatched receivers for linear coded modulation,” PhD Thesis, Deptartment of Electrical, Computer and Systems Engineering, Rensselaer Poly. Inst., Troy, USA, Aug. 1996.

    Google Scholar 

  9. K. Balachandran, “Effect of encoder phase on sequential decoding of partial response coded modulation,” MSc Thesis, Department of Electrical, Computer and Systems Engineering, Rensselaer Poly. Inst., Troy, USA, Feb. 1994.

    Google Scholar 

  10. A. V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  11. C. W.-C. Wong and J. B. Anderson, “Optimal short impulse response channels for an MLSE receiver,” Conf. Rec. Int. Conf. Commun., Boston, Mass., 25.3.1–25.3.5, June 1979.

    Google Scholar 

  12. S. A. Fredericsson, “Optimum transmitting filter in digital PAM systems with a Viterbi detector,” IEEE Trans. Inf. Theory, IT-20, 479–489, July 1974.

    Google Scholar 

  13. F. R. Magee, Jr. and J. G. Proakis, “An estimate of the upper bound on error probability for maximum-likelihood sequence estimation on channels having a finite-duration pulse,” IEEE Trans. Inf. Theory, IT-19, 699–702, Sept. 1973.

    Google Scholar 

  14. R. R. Anderson and G. J. Foschini, “The minimum distance of MLSE digital data systems of limited complexity,” IEEE Trans. Inf. Theory, IT-21, 544–551, Sept. 1985.

    MathSciNet  Google Scholar 

  15. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Academic, New York, 1981.

    MATH  Google Scholar 

  16. J. Mazo, “Faster than Nyquist signaling,” Bell Sys. Tech. J., 54, 1451–1462, Oct. 1975.

    MathSciNet  MATH  Google Scholar 

  17. J. E. Mazo and H. J. Landau, “On the minimum distance problem for faster-than-Nyquist signaling,” IEEE Trans. Inf. Theory, IT-36, 289–295, Mar. 1990.

    Google Scholar 

  18. D. Hajela, “On computing the minimum distance for faster than Nyquist signaling,” IEEE Trans. Inf. Theory, IT-34, 1420–1427, Nov. 1988.

    Google Scholar 

  19. N. Seshadri, “Error performance of trellis modulation codes on channels with severe intersymbol interference,” PhD Thesis, Department of Electrical, Computer and Systems Engineering, Rensselaer Poly. Inst., Troy, USA, Sept. 1986.

    Google Scholar 

  20. N. Seshadri and J. B. Anderson, “Asymptotic error performance of modulation codes in the presence of severe intersymbol interference,” IEEE Trans. Inf. Theory, IT-34, 1203–1216, Sept. 1988.

    MathSciNet  Google Scholar 

  21. N. Seshadri and J. B. Anderson, “Decoding of severely filtered modulation codes using the (M,L) algorithm,” IEEE J. Sel. Areas Communs., SAC-7, 989–995, Aug. 1989.

    Google Scholar 

  22. J. G. Proakis, Digital Communications, 3rd edn. McGraw-Hill, New York, 1995.

    Google Scholar 

  23. S. Qureshi, “Adaptive equalization,” Proc. IEEE, 73, 1349–1387, Sept. 1985.

    Article  Google Scholar 

  24. A. Duel-Hallen and C. Heegard, “Delayed decision-feedback sequence estimation,” Proc. Allerton Conf. Communs., Control and Computing, Monticello, Ill., Oct. 1985; also under same title, IEEE. Trans. Communs., COM-37, 428–436, May 1989.

    Google Scholar 

  25. F. L. Vermeulen and M. E. Hellman, “Reduced state Viterbi decoding for channels with intersymbol interference,” Conf. Rec. Int. Conf. Commun., Minneapolis, 37B-1–37B-9, June 1974.

    Google Scholar 

  26. G. J. Foschini, “A reduced state variant of maximum likelihood sequence detection attaining optimum performance for high signal-to-noise ratios,” IEEE Trans. Inf. Theory, IT-23, 605–609, Sept. 1977.

    MathSciNet  Google Scholar 

  27. S. J. Simmons, “Breadth-first trellis decoding with adaptive effort,” IEEE Trans. Communs., COM-38, 3–12, Jan. 1990.

    MathSciNet  Google Scholar 

  28. K. Balachandran and J. B. Anderson, “Reduced complexity sequence detection for nonminimum phase intersymbol interference channels,” IEEE Trans. Inf. Theory, IT-43, 275–280, Jan. 1997.

    MathSciNet  Google Scholar 

  29. J. B. Anderson, “Limited search trellis decoding of convolutional codes,” IEEE Trans. Inf. Theory, IT-35, 944–955, Sept. 1989.

    Google Scholar 

  30. J. B. Anderson, “On the complexity of bounded distance decoding for the AWGN channel,” IEEE Trans. Inf. Theory, IT-48, 1046–1060, May 2002.

    Google Scholar 

  31. R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press, New York, 1999.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). PRS Coded Modulation. In: Wolf, J.K., McEliece, R.J., Proakis, J., Tranter, W.H. (eds) Coded Modulation Systems. Information Technology: Transmission, Processing and Storage. Springer, Boston, MA. https://doi.org/10.1007/0-306-47792-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47792-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47279-4

  • Online ISBN: 978-0-306-47792-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics