Skip to main content

Conclusion

A general and insightful optimization technique to design integrated LC VCOs utilizing GNP was reviewed. A method for selecting the optimum inductor to minimize phase noise was emphasized. A 2.4 GHz fully integrated LC VCO was designed using our optimization technique and implemented as a design example. A tuning range of 26% was achieved with the inversion mode MOSCAP tuning. The measured phase noise was -121, -117 and -115 dBc/Hz at 600 kHz offset from 1.91, 2.03 and 2.60 GHz carriers, respectively. The designed VCO dissipates only 4 mA from a 2.5 V supply voltage. Comparison with other oscillators using two figures of merit, PFN and PFTN, supports the adequacy of our design methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. M. Nguyen and R. G. Meyer, “A 1.8-GHz monolithic LC voltage controlled oscillator”, IEEE Journal of Solid-state Circuits, vol. 27, no. 3, pp. 444–450, March 1992.

    Article  Google Scholar 

  2. M. Soyuer, K. A. Jenkins, J. N. Burghartz, H. A. Ainspan, F. J. Canora, S. Ponnapalli, J. F. Ewen and W. E. Pence, “A 2.4-GHz silicon bipolar oscillator with integrated resonator”, IEEE Journal of Solid-State Circuits, vol. 31, no. 2, pp. 268–270, February 1996.

    Article  Google Scholar 

  3. A. Ali and J. L. Tham, “A 900 MHz frequency synthesizer with integrated LC voltage-controlled oscillator”, ISSCC Digest of Technical Papers, pp. 390–391, February 1996.

    Google Scholar 

  4. A. Rofougaran, J. Rael, M. Rofougaran and A. Abidi, “A 900 MHz CMOS LC-Oscillator with quadrature outputs”, ISSCC Digest of Technical Papers, pp. 392–393, February 1996.

    Google Scholar 

  5. J. Craninckx and M. Steyaert, “A 1.8-GHz CMOS low-phase-noise voltage-controlled oscillator with prescaler”, IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1474–1482, December 1995.

    Article  Google Scholar 

  6. M. Soyuer, K. A. Jenkins, J. N. Burghartz and M. D. Hulvey, “A 3-V 4-GHz nMOS voltage-controlled oscillator with integrated resonator”, IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp. 2042–2045, December 1996.

    Article  Google Scholar 

  7. B. Razavi, “A 1.8 GHz CMOS voltage-controlled oscillator”, ISSCC Digest of Technical Papers, pp. 388–389, February 1997.

    Google Scholar 

  8. L. Dauphinee, M. Copeland and P. Schvan, “A balanced 1.5 GHz voltage controlled oscillator with an integrated LC resonator”, ISSCC Digest of Technical Papers, pp. 390–391, February 1997.

    Google Scholar 

  9. B. Jansen, K. Negus and D. Lee, “Silicon bipolar VCO family for 1.1 to 2.2 GHz with fully-integrated tank and tuning circuits”, ISSCC Digest of Technical Papers, pp. 392–393, February 1997.

    Google Scholar 

  10. T. Ahrens, A. Hajimiri and T. H. Lee, “A 1.6-GHz 0.5-mW CMOS LC low phase noise VCO using bondwire inductance”, First International Workshop on Design of Mixed-Mode Integrated Circuits and Applications, pp. 69–71, July 1997.

    Google Scholar 

  11. P. Kinget, “A fully integrated 2.7V 0.35µm CMOS VCO for 5 GHz wireless applications”, ISSCC Digest of Technical Papers, pp. 226–227, February 1998.

    Google Scholar 

  12. T. Wakimoto and S. Konaka, “A 1.9-GHz Si bipolar quadrature VCO with fully-integrated LC tank”, VLSI Symposium Digest of Technical Papers, pp. 30–31, June 1998.

    Google Scholar 

  13. A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators”, IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.

    Article  Google Scholar 

  14. T. Ahrens and T. H. Lee, “A 1.4-GHz 3-mW CMOS LC low phase noise VCO using tapped bond wire inductance”, International Symposium on Low Power Electronics and Design, August 1998.

    Google Scholar 

  15. M. Zannoth, B. Kolb, J. Fenk and R. Weigel, “A fully integrated VCO at 2 GHz”, IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1987–1991, December 1998.

    Article  Google Scholar 

  16. J. Craninckx and M. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer”, IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2054–2065, December 1998.

    Article  Google Scholar 

  17. C. Lam and B. Razavi, “A 2.6 GHz/5.2 GHz CMOS voltage-controlled oscillator”, ISSCC Digest of Technical Papers, pp. 402–403, February 1999.

    Google Scholar 

  18. T. Liu, “A 6.5 GHz monolithic CMOS voltage-controlled oscillator”, ISSCC Digest of Technical Papers, pp. 404–405, February 1999.

    Google Scholar 

  19. H. Wang, “A 9.8 GHz back-gate tuned VCO in 0.35µm CMOS”, ISSCC Digest of Technical Papers, pp. 406–407, February 1999.

    Google Scholar 

  20. C. Hung and K. O. Kenneth, “A packaged 1.1-GHz CMOS VCO with phase noise of-126 dBc/Hz at a 600-kHz offset”, IEEE Journal of Solid-State Circuits, vol. 35, pp. 100–103, January 2000.

    Article  Google Scholar 

  21. G. Chien and P. Gray, “A 900 MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications”, pp. 202–203, February 2000.

    Google Scholar 

  22. J. Kim and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure”, ISSCC Digest of Technical Papers, pp. 430–431, February 2000.

    Google Scholar 

  23. F. Svelto, S. Deantoni and R. Castello, “A 1.3 GHz low-phase noise fully tunable CMOS LC VCO”, IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 356–361, March 2000.

    Article  Google Scholar 

  24. M. Hershenson, S. S. Mohan, S. P. Boyd and T. H. Lee, “Optimization of inductor circuits via geometric programming”, Proceedings of the Design Automation Conference, Session 54.3, pp. 994–998, June 1999.

    Google Scholar 

  25. M. Hershenson, A. Hajimiri, S. S. Mohan, S. P. Boyd and T. H. Lee, “Design and optimization of LC oscillators”, Proceedings of the IEEE/ACM International Conference, Computer Aided Design, San Jose, CA, November 1999.

    Google Scholar 

  26. D. Ham and A. Hajimiri, “Design and optimization of integrated LC VCOs via graphical nonlinear programming” (to appear in IEEE Journal of Solid-State Circuits).

    Google Scholar 

  27. G. Hadley, Linear Programming. Addison-Wesley Pub. Co. 1962.

    Google Scholar 

  28. A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators. Boston: Kluwer Academic Publishers, 1999.

    Google Scholar 

  29. A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators”, IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, February 1998.

    Article  Google Scholar 

  30. H. Wang, A. Hajimiri and T. H. Lee, “Correspondence: comments on ‘Design Issues in CMOS differential LC oscillators’”, IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 286–287, February 2000.

    Google Scholar 

  31. C. P. Yue, C. Ryu, J. Lau, T. H. Lee and S. S. Wong, “A physical model for planar spiral inductors on silicon”, International Electron Devices Meeting, pp. 155–158, December 1996.

    Google Scholar 

  32. P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. John Wiley & Sons, Inc., 1993.

    Google Scholar 

  33. A. van der Ziel, “Thermal noise in field effect transistors”, Proceedings of the IEEE, pp. 1801–1812, August 1962.

    Google Scholar 

  34. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 1998.

    Google Scholar 

  35. Y. P. Tsivids, Operation and Modeling of the MOS Transistor. McGraw-Hill, 1987.

    Google Scholar 

  36. F. Reif, Statistical Physics. McGraw-Hill, 1967.

    Google Scholar 

  37. A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s”, IEEE Journal of Solid-State Circuits, vol. 33, no. 10, pp. 1470–1481, October 1998.

    Article  Google Scholar 

  38. D. Ham and A. Hajimiri, “Design and optimization of a low noise 2.4 GHz CMOS VCO with integrated LC tank and MOSCAP tuning”, IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, May 2000.

    Google Scholar 

  39. A. Hajimiri, “Current state of integrated oscillator design”, Proceedings of the CSCC, 1999.

    Google Scholar 

  40. D. B. Leeson, “A simple model of feedback oscillator noise spectrum”, Proceedings of the IEEE, vol. 54, pp. 329–330, February 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ham, D. (2002). Design of Integrated LC VCOs. In: Toumazou, C., Moschytz, G., Gilbert, B., Kathiresan, G. (eds) Trade-Offs in Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-47673-8_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-47673-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7037-2

  • Online ISBN: 978-0-306-47673-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics