Skip to main content

Compatibility of SC Technique with Digital VLSI Technology

  • Chapter
Trade-Offs in Analog Circuit Design

Summary

Compatibility of SC circuits with standard VLSI processes is feasible using MOSFET gate capacitors. In this chapter, the charge-domain principle has been discussed, where the signal is processed within charge signal variables. Thus, the linearity of the transfer function is preserved as long as the circuit structures fulfill the required condition. Three basic operations have been presented, where their extensions to implement the more systematic applications will be discussed in Chapter 17. Interfacing the charge-domain processors with the voltage environment can be obtained by employing the linearity enhancement composite capacitor branches. Simulated verifications were carried out to demonstrate the effectiveness of these techniques and have shown significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. B. Slater, Jr. and J. J. Paulos, “Low-Voltage coefficient capacitors for VLSI processes”, IEEE Journal of Solid-State Circuits, vol. 24, pp. 165–173, February 1989.

    Article  Google Scholar 

  2. P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 3rd edn., John Wiley & Sons, 1993.

    Google Scholar 

  3. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 1987.

    Google Scholar 

  4. D. A. Johns and K. Martin, Analog Integrated Circuit Design. John Wiley & Sons, 1997.

    Google Scholar 

  5. T. C. Choi, R. T. Kaneshiro, R. W. Brodersen, P. R. Gray, W. B. Jett and M. Wilcox, “High-frequency CMOS switched-capacitor filters for communications applications”, IEEE Journal of Solid-State Circuits, vol. SC-18, pp. 652–664, December 1983.

    Google Scholar 

  6. B. J. Hosticka, “Improvement of the gain of CMOS amplifiers”, IEEE Journal of Solid-State Circuits, vol. SC-14, pp. 1111–1114, December 1979.

    Google Scholar 

  7. K. Bult and G. J. G. M. Geelen, “A fast-settling CMOS op amp for SC circuits with 90-dB DC gain”, IEEE Journal of Solid-State Circuits, vol. 25, pp. 1379–1384, December 1990.

    Article  Google Scholar 

  8. E. Sackinger and W. Guggenbuhl, “A high-swing, high-impedance MOS cascode circuit”, IEEE Journal of Solid-State Circuits, vol. 25, pp. 289–298, February 1990.

    Article  Google Scholar 

  9. B. Y. Kamath, R. G. Meyer and P. R. Gray, “Relationship between frequency response and settling time of operational amplifiers”, IEEE Journal of Solid-State Circuits, vol. SC-9, pp. 347–352, December 1974.

    Google Scholar 

  10. J. E. Solomon, “The monolithic op amp: a tutorial study”, IEEE Journal of Solid-State Circuits, vol. SC-9, pp.314–332, December 1974.

    Google Scholar 

  11. P. R. Gray and R. G. Meyer, “MOS operational amplifier design-A tutorial overview”, IEEE Journal of Solid-State Circuits, vol. SC-17, pp. 969–982, December 1982.

    Google Scholar 

  12. Y. Tsividis and P. R. Gray, “An integrated NMOS operational amplifier with internal compensation”, IEEE Journal of Solid-State Circuits, vol. SC-11, pp. 748–753, December 1976.

    Google Scholar 

  13. H. Yoshizawa, Y. Huang, P. F. Ferguson and G. C. Temes, “MOSFET-only switched-capacitor circuits in digital CMOS technology”, IEEE Journal of Solid-State Circuits, vol. 34, pp. 734–747, June 1999.

    Article  Google Scholar 

  14. B. K. Ahuja, “An improved frequency compensation techniques for CMOS operational amplifiers”, IEEE Journal of Solid-State Circuits, vol. SC-18, pp. 629–633, December 1983.

    MathSciNet  Google Scholar 

  15. D. B. Ribner and M. A. Copeland, “Design techniques for cascoded CMOS op amps with improved PSRR and common-mode range”, IEEE Journal of Solid-State Circuits, vol. SC-19, pp. 919–925, December 1984.

    Google Scholar 

  16. M. Banu, J. M. Khoury and Y. Tsividis, “Fully differential operation amplifiers with accurate output balancing”, IEEE Journal of Solid-State Circuits, vol. 23, pp. 1410–1414, December 1988.

    Google Scholar 

  17. D. Senderowicz, S. F. Dreyer, J. H. Huggins, C. F. Rahim and C. A. Labr, “A family of differential NMOS analog circuits for a PCM codec filter chip”, IEEE Journal of Solid-State Circuits, vol. SC-17, pp. 1014–1023, December 1982.

    Google Scholar 

  18. R. Castello and P. R. Gray, “A high-performance micropower switchedcapacitor filter”, IEEE Journal of Solid-State Circuits, vol. SC-20, pp. 1122–1132, December 1985.

    Google Scholar 

  19. A. T. Behr, M. C. Schneider, S. N. Filho and C. G. Montoro, “Harmonic distortion caused by capacitors implemented with MOSFET gates”, IEEE Journal of Solid-State Circuits, vol. 27, pp. 1470–1475, October 1992.

    Article  Google Scholar 

  20. D. J. Allstot and W. C. Black, Jr., “Technological design considerations for monolithic MOS switched-capacitor filtering systems”, Proceedings of the IEEE, vol. 71, pp. 967–986, August 1983.

    Article  Google Scholar 

  21. H. Yoshizawa and G. C. Temes, “High-linearity switched-capacitor circuits in digital CMOS technology”, Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1029–1032, 1995.

    Google Scholar 

  22. H. Yoshizawa, G. C. Temes, P. Ferguson and F. Krummenacher, “Novel design techniques for high-linearity MOSFET-only switched-capacitor circuits”, Proceedings of the IEEE VLSI Circuit Symposium, pp. 152–153, 1996.

    Google Scholar 

  23. H. Yoshizawa, Y. Huang and G. C. Temes, “MOSFET-only switchedcapacitor circuits in digital CMOS technologies,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 457–460, 1997.

    Google Scholar 

  24. K. Leelavattananon, C. Toumazou and J. B. Hughes, “Balanced compensation for highly linear MOSFET gate capacitor branch”, Electronics Letters, vol. 35, pp. 1409–1410, August 1999.

    Article  Google Scholar 

  25. K. Leelavattananon, C. Toumazou and J. B. Hughes, “Linearity enhancement techniques for MOSFET-only SC circuits”, Proceedings of the IEEE International Symposium on Circuits and Systems, pp. V453–V456, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Leelavattananon, K., Toumazou, C. (2002). Compatibility of SC Technique with Digital VLSI Technology. In: Toumazou, C., Moschytz, G., Gilbert, B., Kathiresan, G. (eds) Trade-Offs in Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-47673-8_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-47673-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7037-2

  • Online ISBN: 978-0-306-47673-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics