Skip to main content

Hemofiltration and Plasmapheresis

  • Chapter
The Sepsis Text
  • 306 Accesses

Conclusion

Sepsis and septic shock remain a very complex matter. It is only by a better knowledge of the pathophysiology of this syndrome and a better insight into the role of the various pro-and anti-inflammatory mediators that new treatments can be tested. Hemofiltration or hemoperfusion remain invasive, with potential side effects for the patient. Hence, experimental research remains very important and should be performed before the onset of clinical trials in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeman BD, Yatsiv I, Natanson C, et al. Continuous arteriovenous hemofiltration does not improve survival in a canine model of septic shock. J Am Coll Surg 1995; 180:286–292

    PubMed  CAS  Google Scholar 

  2. DiScipio AW, Burchard KW. Continuous arteriovenous hemofiltration attenuates polymorphonuclear leukocyte phagocytosis in porcine intra-abdominal sepsis. Am J Surg 1997; 173:174–180

    Google Scholar 

  3. Grootendorst AF, van Bommel EF, van Leengoed LA, et al. High volume hemofiltration improves hemodynamics and survival of pigs exposed to gut ischemia and reperfusion. Shock 1994; 2:72–78

    PubMed  CAS  Google Scholar 

  4. Yekebas EF, Treede H, Knoefel WT, et al. Influence of zero-balanced hemofiltration on the course of severe experimental pancreatitis in pigs. Ann Surg 1999; 229:514–522

    Article  PubMed  CAS  Google Scholar 

  5. Lee PA, Matson JR, Pryor RW et al. Continuous arteriovenous hemofiltration therapy for Staphylococcus aureus induced septicemia in immature swine. Crit Care Med 1993; 21:914–924

    PubMed  CAS  Google Scholar 

  6. Lee PA, Weger GW, Pryor RW et al. Effects of filter pore size on efficacy of continuous arteriovenous hemofiltration therapy for Staphylococcus aureus-induced septicemia in immature swine. Crit Care Med 1998; 26:730–737

    PubMed  CAS  Google Scholar 

  7. Rogiers P, Sun Q, Pauwels D, et al. Hemofiltration does not reverse hemodynamic changes in acute ovine septic shock. Am J Resp Crit Care Med 2000; 161:A 885 (Abst)

    Google Scholar 

  8. Staubach KH, Rau HG, Kooistra A, et al. Can hemofiltration increase survival time in acute endotoxemia-a porcine shock model. Progr Clin Biol Res 1989; 308:821–826

    CAS  Google Scholar 

  9. Stein B, Pfenninger E, Grunert A et al. Influence of continuous hemofiltration on hemodynamics and central blood volume in experimental endotoxic shock. Intensive Care Med 1990; 16:494–499

    Article  PubMed  CAS  Google Scholar 

  10. Gomez A, Wang R, Unruh H, et al. Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 1990; 73:671–685

    PubMed  CAS  Google Scholar 

  11. Mink SN, Jha P, Wang R, et al. Effects of continuous arteriovenous hemofiltration with systemic vasopressor therapy on depressed left ventricular contractility and tissue oxygen delivery in canine Escherichia coli sepsis. Anesthesiology 1995; 83:178–190

    PubMed  CAS  Google Scholar 

  12. Mink SN, Li X, Bose D, et al. Early but not delayed continuous arteriovenous hemofiltration improves cardiovascular function in sepsis in dogs. Intensive Care Med 1999; 25:733–743

    Article  PubMed  CAS  Google Scholar 

  13. Murphey ED, Fessler JF, Bottoms GD, et al. Effects of continuous venovenous hemofiltration on cardiopulmonary function in a porcine model of endotoxin-induced shock. J Vet Res 1997; 58:408–413

    CAS  Google Scholar 

  14. Reeves JH, Butt WW. Hemodynamic effects of arteriovenous and venovenous hemofiltration in piglets. Pediatr Nephrol 1996; 10:58–63

    Article  PubMed  CAS  Google Scholar 

  15. Heidemann SM, Ofenstein JP, Sarnaik AP. Efficacy of continuous arteriovenous hemofiltration in endotoxic shock. Circ Shock 1994; 44:183–187

    PubMed  CAS  Google Scholar 

  16. Grootendorst AF, van Bommel EFH, van der Hoven B, et al. High-volume hemofiltration improves hemodynamics of endotoxin-induced shock in the pig. J Crit Care 1992; 7:67–75

    Article  Google Scholar 

  17. Grootendorst AF, van Bommel EFH, van der Hoven B, et al. High volume hemofiltration improves right ventricular function of endotoxin induced shock in the pig. Intensive Care Med 1992; 18:235–240

    Article  PubMed  CAS  Google Scholar 

  18. Rogiers P, Zhang H, Smail N, et al. CVVH improves cardiac performance by mechanisms other than TNF attenuation during endotoxic shock. Crit Care Med 1999; 27:1848–1855

    PubMed  CAS  Google Scholar 

  19. Kline JA, Gordon BE, Williams et al. Large-pore hemodialysis in acute endotoxin shock. Crit Care Med 1999; 27:588–96

    PubMed  CAS  Google Scholar 

  20. Lonneman G, Schindler R, Dinarello CA, et al. Removal of cytokines by hemodialysis membrane in vitro. In: Faist E, Meakins J, Schildberg FW [eds] Host defense dysfunction in trauma, shock and sepsis. Springer, Berlin, Heidelber, New York 1993, 613–623

    Google Scholar 

  21. Barrera P, Janssen EM, Demacker PN, et al. Removal of interleukin-1 beta and TNF from human plasma by in vitro dialysis with polyacrylonitrile membranes. Lymphokine Cytokine Res 1992; 11:99–104

    PubMed  CAS  Google Scholar 

  22. Goldfarb S, Golper TA. Pro-inflammatory cytokines and hemofiltration membranes. J Am Soc Nephrol 1994; 5:228–232

    PubMed  CAS  Google Scholar 

  23. Nagaki M, Hughes RD, Lau JYN, et al. Removal of endotoxin and cytokines by adsorbents and the effects of plasma protein binding. Int J Artif Organs 1991; 14:43–50

    PubMed  CAS  Google Scholar 

  24. Ronco C, Tetta C, Lupi A, et al. Removal of platelet-activating factor in experimental continuous arteriovenous hemofiltration. Crit Care Med 1995; 23:99–107

    PubMed  CAS  Google Scholar 

  25. Gotloib L, Barzilay E, Shustak A, et al. Hemofiltration in septic ARDS. The artificial kidney as an artificial endocrine lung. Resuscitation 1986; 13:123–132

    Article  PubMed  CAS  Google Scholar 

  26. Coraim FJ, Coraim HP, Ebermann R, et al. Acute respiratory failure after cardiac surgery: clinical experience with the application of continuous arteriovenous hemofiltration. Crit Care Med 1986; 14:714–718

    PubMed  CAS  Google Scholar 

  27. Mc Donald BR, Mehta RL. Transmembrane flux of IL-1B and TNF-a in patients undergoing continuous arteriovenous hemodialysis. J Am Soc Nephrol 1990; 1:368A

    Google Scholar 

  28. Kierdorf H, Melzer H, Weissen D, et al. Elimination of tumor necrosis factor by continuous venovenous hemofiltration. Ren Fail 1992; 14:98 (Abst)

    Google Scholar 

  29. Tonnesen E, Hansen MB, Höhndorf K, et al. Cytokines in plasma and ultrafiltrate during continuous arteriovenous hemofiltration. Anaesth Intens Care 1993; 21:752–758

    CAS  Google Scholar 

  30. Bellomo R, Tipping P, Boyce N. Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med 1993; 21:522–526

    PubMed  CAS  Google Scholar 

  31. Andreasson S, Göthberg S, Berggren H, et al. Hemofiltration modifies complement activation after extracorporeal circulation in infants. Ann Thorac Surg 1993; 56:1515–1517

    Article  PubMed  CAS  Google Scholar 

  32. Millar AB, Armstrong L, van der Linden. Cytokine production and hemofiltration in children undergoing cardiopulmonary bypass. Ann Thorac Surg 1993; 56:1499–1502

    Article  PubMed  CAS  Google Scholar 

  33. Journois D, Pouard P, Greeley WJ, et al. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Anesthesiology 1994; 81:1181–1189

    PubMed  CAS  Google Scholar 

  34. Elliott D, Wiles C, Reynolds H, et al. Removal of cytokines in septic patients using continuous venovenous hemodiafiltration. Crit Care Med 1994; 22:718–719

    PubMed  CAS  Google Scholar 

  35. Bellomo R, Tipping P, Boyce N. Interleukin-6 and interleukin-8 extraction during continuous venovenous hemodiafiltration in septic acute renal failure. Renal Failure 1995; 17:457–466

    PubMed  CAS  Google Scholar 

  36. Hoffmann J, Hard W, Deppisch, et al. Hemofiltration in human sepsis: evidence for elimination of immunomodulary substances. Kidney Int 1995; 48:1563–1570

    PubMed  CAS  Google Scholar 

  37. Sander A, Armbruster W, Sander B, et al. The influence of continuous hemofiltration on cytokine elimination and cardiovascular stability in the early phase of sepsis. Contrib Nephrol 1995; 116:99–103

    PubMed  CAS  Google Scholar 

  38. Braun N, Rosenfeld S, Giolai M, et al. Effect of continuous hemodiafiltration on IL-6, TNF-alpha, C3a and TCC in patients with SIRS/septic shock using two different membranes. Contrib Nephrol 1995; 116:89–98

    PubMed  CAS  Google Scholar 

  39. Hoffmann J, Hard W, Deppisch R, et al. Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylatoxins and cytokines in human sepsis. Intensive Care Med 1996; 22:1360–1367

    PubMed  CAS  Google Scholar 

  40. Boldt J, Müller M, Heesen M, et al. The effects of pentoxifylline on circulating adhesion molecules in critically ill patients with acute renal failure treated by continuous haemofiltration. Intensive Care Med 1996; 22:305–311

    PubMed  CAS  Google Scholar 

  41. Wakabayashi Y, Kamijou Y, Soma K, et al. Removal of circulating cytokines by continuous haemofiltration in patients with systemic inflammatory response syndrome or multiple organ dysfunction syndrome. Br J Surg 1996; 83:393–394

    PubMed  CAS  Google Scholar 

  42. Gasche Y, Pascual M, Suter PM, et al. Complement depletion during haemofiltration with polyacrilonitrile membranes. Nephrol Dial Transplant 1996; 11:117–119

    PubMed  CAS  Google Scholar 

  43. Journois D, Israel-Biet D, Pouard P, et al. High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology 1996; 85:965–976

    PubMed  CAS  Google Scholar 

  44. Heering P, Morgera S, Schmitz FJ, et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous veno-venous hemofiltration. Intensive Care Med 1997; 23:288–296

    Article  PubMed  CAS  Google Scholar 

  45. Sander A, Armbruster W, Sander B, et al. Hemofiltration increases IL-6 clearance in early systemic inflammatory response syndrome, but does not alter IL-6 and TNF-alpha plasma concentrations. Intensive Care Med 1997; 23:878–884

    Article  PubMed  CAS  Google Scholar 

  46. van Bommel EF, Hesse CJ, Jutte NH, et al. Impact of continuous hemofiltration on cytokines and cytokine inhibitors in oliguric patients suffering from systemic inflammatory response syndrome. Ren Fail 1997; 19:443–454

    Article  PubMed  Google Scholar 

  47. Kellum JA, Johnson JP, Kramer D, et al. Diffusive vs convective therapy: effects on mediators of inflammation in patients with severe systemic inflammatory response syndrome. Crit Care Med 1998; 26:1995–2000

    PubMed  CAS  Google Scholar 

  48. De Vriese AS, Colardyn FA, Philippé JJ, et al. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 1999; 10:846–853

    PubMed  Google Scholar 

  49. Grooteman MPC, Groeneveld ABJ. A role for plasma removal during sepsis? Intensive Care Med 2000; 26:493–495

    Article  PubMed  CAS  Google Scholar 

  50. Schetz M, Ferdinande P, Van den Berghe G, et al. Removal of pro-inflammatory cytokines with renal replacement therapy: sense or nonsense? Intensive Care Med 1995; 21:169–176

    PubMed  CAS  Google Scholar 

  51. Rodby RA. Hemofiltration for SIRS: Bloodletting, twentieth century style? Crit Care Med 1998; 26:1940–1942

    PubMed  CAS  Google Scholar 

  52. Oudemans-van Straaten, HM, Bosman RJ, van der Spoel JI, et al. Outcome of critically ill patients treated with intermittent high-volume hemofiltration: a prospective cohort analysis. Intensive Care Med 1999; 25:814–21

    Article  PubMed  CAS  Google Scholar 

  53. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous venovenous hemofiltration on outcomes of acute renal failure: a prospective randomized trial. Lancet 2000; 355:26–30

    Google Scholar 

  54. Natanson C, Hoffman WD, Koev LA, et al. Plasma exchange does not improve survival in a canine model of human septic shock. Transfusion 1993; 33:243–248

    Article  PubMed  CAS  Google Scholar 

  55. Stegmayr BG. Plasmapheresis in severe sepsis or septic shock. Blood Purification 1996; 14:94–101

    PubMed  CAS  Google Scholar 

  56. van Deuren M, Santman FW, van Dalen R, et al. Plasma and whole blood exchange in meningococcal sepsis. Clin Infect Dis 1992; 15:424–430

    PubMed  Google Scholar 

  57. Mc Clelland P, Williams PS, Yaqoob M, et al. Multiple organ failure: a role for plasma exchange. Intensive Care Med 1990; 16:100–103

    CAS  Google Scholar 

  58. Reeves JH, Butt WW, Shann F, et al. Continuous plasmafiltration in sepsis syndrome. Crit Care Med 1999; 27:2096–2104

    PubMed  CAS  Google Scholar 

  59. Schmidt J, Mann S, Mohr VD, et al. Plasmapheresis combined with continuous hemofiltration in surgical patients with sepsis. Intensive Care Med 2000; 26:532–537

    Article  PubMed  CAS  Google Scholar 

  60. Tetta C, Cavaillon JM, Schulze M, et al. Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol Dial Transplant 1998; 13:1458–1464

    PubMed  CAS  Google Scholar 

  61. Tetta C, Gianotti L, Cavaillon JM, et al. Continuous plasmafiltration coupled with sorbent adsorption in a rabbit model of gram-negative sepsis. J Am Soc Nephrol. 1998; 9:588A

    Google Scholar 

  62. Brendolan A, Irone M, Digno A, et al. Coupled plasma filtration-adsorption technique [CPAT] in sepsis-associated acute renal failure: hemodynamic effects. J Am Soc Nephrol. 1998; 9:127A

    Google Scholar 

  63. Winchester JF. Hemoperfusion. In: Maher JF (ed) Replacement of Renal Function by Dialysis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989, pp 439–459

    Google Scholar 

  64. Jaber BL, Pereira BJG. Extracorporeal adsorbent-based strategies in sepsis. Am J Kidney Dis 1997; 30:44–56

    Google Scholar 

  65. Bysani GK, Shenep JL, Hildner WK, et al. Detoxification of plasma containing lipopolysaccharide by adsorption. Crit Care Med 1990; 18:67–71

    PubMed  CAS  Google Scholar 

  66. Bende S, Bertok L. Elimination of endotoxin from the blood by extracorporeal activated charcaol hemoperfusion in experimental canine endotoxic shock. Circ Shock 1986; 19:239–244

    PubMed  CAS  Google Scholar 

  67. Asanuma Y, Takahashi T, Kato T, et al. Treatment of endotoxin shock due to gramnegative bacteremia using extracorporeal circulation. Jpn J Gastroenterol 1989; 86:246–252

    CAS  Google Scholar 

  68. Jaber BL, Barrett TW, Cendoroglo Neto M, et al. Endotoxin removal by polymyxin-B immobilized derivative fibers during in vitro hemoperfusion of 10% human plasma. ASAIO J 1998; 44:54–61

    PubMed  CAS  Google Scholar 

  69. Hanasawa K, Tani T, Kodama M. New approach to endotoxic and septic shock by means of polymyxin B immobilized fiber. Surg Gynecol Obstet 1989; 168:323–331

    PubMed  CAS  Google Scholar 

  70. Kodama M, Hanasawa K, Tani T. New therapeutic method against septic shock-Removal of endotoxin using extracorporeal circulation. Adv Exp Med Biol 1990; 256:653–664

    PubMed  CAS  Google Scholar 

  71. Sato T, Orlowski JP, Zborowski M. Experimental study of extracorporeal perfusion for septic shock. ASAIO J 1993; 39:M790–M793

    PubMed  CAS  Google Scholar 

  72. Cheadle WG, Hanasawa K, Gallinaro RN, et al. Endotoxin filtration and immune stimulation improve survival from gram-negative sepsis. Surgery 1991; 110:785–792

    PubMed  CAS  Google Scholar 

  73. Kodama M, Aoki H, Tani T, et al. Hemoperfusion using a polymyxin B immobilized fiber columnfor the removal of endotoxin. In: Levin J, Alving CR, Munford RS, Stutz PL (eds) Bacterial Endotoxin: Recognition and Effector Mechanisms. Elsevier Science, Amsterdam, The Netherlands, 1993, pp 389–398

    Google Scholar 

  74. Aoki H, Kodama M, Tani T, et al. Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-immobilized fiber. Am J Surg 1994; 167:412–417

    Article  PubMed  CAS  Google Scholar 

  75. Tani T, Hanasawa K, Endo Y, et al. Therapeutic apheresis for septic patients with organ dysfunction: hemoperfusion using a polymyxin B immobilized column. Artif Organs 1998; 22:1038–1044

    Article  PubMed  CAS  Google Scholar 

  76. Weber C, Falkenhagen D. Extracorporeal removal of proinflammatory cytokines by specific adsorption onto microspheres. ASAIO J 1996; 42:M908–M911

    Article  PubMed  CAS  Google Scholar 

  77. Humes HD, Mac Kay SM, Funke AJ, et al. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 1999; 55:2502–2514

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rogiers, P. (2002). Hemofiltration and Plasmapheresis. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_47

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics