Skip to main content

Anti-Cytokine Therapy

  • Chapter
The Sepsis Text

Conclusion

Agents able to neutralize the effects of IL-1 or TNF have impressive effects in preclinical models of endotoxemia or sepsis. However, the ability of such therapies to reduce mortality or morbidity in critically ill septic patients appears to be, at best, very limited. Although it is simply possible that neither TNF-α nor IL-1 play an important role in clinical sepsis, it is more likely that the disappointing results of clinical trials reflects the heterogeneity of patient populations recruited into such studies. Both IL-1 and TNF-α are likely to be elevated early in proinflammatory cascades initiated by infection. These cytokines may be less important in perpetuating inflammatory processes once organ system dysfunction develops. In no study were patients identified and enrolled based on documented elevations in tissue or circulating levels of IL-1 or TNF-α. Therefore, it is difficult to know if the patients enrolled actually had excessive production of the cytokines being blocked. However, in the NORASEPTII study [30], a retrospective analysis of patients with detectable circulating TNF-α levels only showed a relative decrease in mortality of 9% in patients treated with anti-TNF-α antibodies. These results would suggest that even if septic patients with elevated TNF-α could be identified, the impact of anti-TNF-α therapies would be relatively modest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okusawa S, Gelfand JA, Ikejima T, et al. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 1988; 81:1162–1172

    PubMed  CAS  Google Scholar 

  2. Chapman PB, Lester TJ, Casper ES, et al. Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncol 1987; 5:1942–1951

    PubMed  CAS  Google Scholar 

  3. Smith JW, Urba WJ, Curti BD, et al. The toxic and hematologic effects of interleukin-1 alpha administered in a phase I trial to patients with advanced malignancies. J Clin Oncol 1992; 10:1141–1152

    PubMed  Google Scholar 

  4. Van der Poll T, Buller HR, ten Cate HT. Activation of coagulation after administration of TNF to normal subjects. N Engl J Med 1990; 322:1622–1627

    PubMed  Google Scholar 

  5. Endo S, Inada K, Nakae H, et al. Plasma levels of type II phospholipase A2 and cytokines in patients with sepsis. Res Comm Mol Path Pharmacol 1995; 90:413–421

    CAS  Google Scholar 

  6. Diaz A, Chepenik KP, Korn JH, et al. Differential regulation of cyclooxygenases 1 and 2 by interleukin-1β tumor necrosis factor-α, and transforming growth factor-β1 in human lung fibroblasts. Exp Cell Res 1998; 241:222–229.

    Article  PubMed  CAS  Google Scholar 

  7. Newton R, Stevens DA, Hart LA, et al. Superinduction of COX-2 mRNAby cycloheximide and interleukin-1β involves increased transcription and correlates with increased NF-κB and JNK activation. FEBS Letters 1997; 418:135–138

    Article  PubMed  CAS  Google Scholar 

  8. Guan Z, Baier LD, Morrison AR. p38 mitogen-activated protein kinase down-regulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-1β. J Biol Chem 1997; 272:8083–8089

    PubMed  CAS  Google Scholar 

  9. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43:109–142

    PubMed  CAS  Google Scholar 

  10. Dinarello CA. Biological basis for interleukin-1 in disease. Blood 1996; 87:2095–2147

    PubMed  CAS  Google Scholar 

  11. Heremans H, van Damme J, Dillen C, et al. Interferon-γ, a mediator of lethal lipopolysaccharide-induced Shwartzman-like shock in mice. J Exp Med 1990; 171:1853–1861

    Article  PubMed  CAS  Google Scholar 

  12. Huang S, Hendriks W, Althage A, et al. Immune response in mice that lack the interferon-gamma receptor. Science 1993; 259:1742–1745

    PubMed  CAS  Google Scholar 

  13. Car BD, Eng VM, Schnyder B, Ozmen L, et al. Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 1994; 179:1437–1444

    Article  PubMed  CAS  Google Scholar 

  14. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 1987; 330:662–664

    Article  PubMed  CAS  Google Scholar 

  15. Fong Y, Tracey KJ, Moldawer LL, et al. Antibodies to cachectin/TNF reduce interleukin-1 and interleukin-6 appearance during lethal bacteremia. J Exp Med 1989; 170:1627–1633

    Article  PubMed  CAS  Google Scholar 

  16. Hinshaw LB, Tekamp-Olson P, Chang AC, et al. Survival of primates in LD 100 septic shock following therapy with antibody to tumor necrosis factor (TNF). Circ Shock 1990; 30:279–292

    PubMed  CAS  Google Scholar 

  17. Abraham E, Glauser MP, Butler T, et al. p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. JAMA 1997; 277:1531–1534

    Article  PubMed  CAS  Google Scholar 

  18. Ohlsson K, Bjork P, Bergenfeldt M, et al. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 1990; 348:550–552

    Article  PubMed  CAS  Google Scholar 

  19. Wakabayashi G, Gelfand JA, Burke JF, et al. A specific receptor antagonist for interleukin-1 prevents Escherichia coli-induced shock. FASEB J 1991; 5:338–343

    PubMed  CAS  Google Scholar 

  20. Hawes AS, Fischer E, Marano MA, et al. Comparison of peripheral blood leukocyte kinetics after live Escherichia coli, endotoxin, or interleukin-1 alpha administration. Studies using a novel interleukin-1 receptor antagonist. Ann Surg 1993; 218:79–90

    PubMed  CAS  Google Scholar 

  21. Fischer E, Marano MA, Van Zee KJ, et al. Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. J Clin Invest 1992; 89:1551–1557

    Article  PubMed  CAS  Google Scholar 

  22. Fisher CJ Jr., Slotman GJ, Opal SM, et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, openlabel, placebo-controlled multicenter trial. The IL-1RA Sepsis Syndrome Study Group. Crit Care Med 1994; 22:12–21

    PubMed  Google Scholar 

  23. Fisher CJ Jr., Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-lra Sepsis Syndrome Study Group. JAMA 1994; 271:1836–1843

    Article  PubMed  Google Scholar 

  24. Opal SM, Fisher CJ, Pribble JP, et al. The confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III randomized, double-blind, placebo-controlled, multicenter trial. Crit Care Med 1997; 25:1115–1124

    PubMed  CAS  Google Scholar 

  25. Hinshaw LB, Emerson TE Jr., Taylor FB Jr, et al. Lethal S. aureus shock in primates: prevention of death with anti-TNF antibody. J Trauma 1992; 33:568–573

    Article  PubMed  CAS  Google Scholar 

  26. Vincent JL, Bakker J, Marecaux G, et al. Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 1992; 101:810–815

    PubMed  CAS  Google Scholar 

  27. Dhainaut J-F A, Vincent J-L, Richard C, et al. CDP571, a humanized antibody to human tumor necrosis factor-α Safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock Crit Care Med 1995; 23:1461–1469

    PubMed  CAS  Google Scholar 

  28. Abraham E, Wunderink R, Silverman H, et al. Monoclonal antibody to human tumor necrosis factor alpha (TNF MAb): Efficacy and safety in patients with the sepsis syndrome. JAMA 1995; 273:934–941

    Article  PubMed  CAS  Google Scholar 

  29. Cohen J, Carlet J. INTERSEPT: An international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Crit Care Med 1996; 24:1431–1440

    PubMed  CAS  Google Scholar 

  30. Abraham E, Anzueto A, Gutierrez G, et al. Monoclonal antibody to human tumor necrosis factor alpha (TNF Mab) in the treatment of patients with septic shock: A multi-center, placebo controlled, randomized, double-blind clinical trial. Lancet 1998; 351:929–933

    PubMed  CAS  Google Scholar 

  31. Reinhart K, Wiegand-Lohnert C, Grimminger F, et al. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: A multicenter, randomized, placebo-controlled, dose-ranging study. Crit Care Med 1996; 24:733–742

    PubMed  CAS  Google Scholar 

  32. Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 1997; 25:1095–1100

    PubMed  CAS  Google Scholar 

  33. Natanson C, Esposito CJ, Banks SM. The sirens’ songs of confirmatory sepsis trials: selection bias and sampling error. Crit Care Med 1998; 26:1927–1931

    PubMed  CAS  Google Scholar 

  34. Fisher CJ Jr., Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor Fc fusion protein. N Engl J Med 1996; 334:1697–1702

    Article  PubMed  CAS  Google Scholar 

  35. Clark MA, Plank LD, Connolly AB, et al. Effect of a chimeric antibody to tumor necrosis factor-α on cytokine and physiologic responses in patients with severe sepsis — a randomized, clinical trial. Crit Care Med 1998; 26:1650–1659

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Abraham, E. (2002). Anti-Cytokine Therapy. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_41

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics