Skip to main content

The Coagulation System in Sepsis

  • Chapter
The Sepsis Text
  • 293 Accesses

Conclusion

Extrinsic and intrinsic pathways of the coagulation system should no longer be considered as distinct entities, but rather as an integrated system providing optimal thrombin generation via the TF/factor VII complex. The role of factor XII and other contact system proteins in coagulation is less clear, and presumably is more important for fibrinolysis and inflammation.

There is no doubt that activation of coagulation, predominantly, if not exclusively, via the TF/factor VII pathway, occurs in animal and human models for sepsis. In the more severe sepsis animal models, this activation is associated with full-blown DIC. In these latter models inhibitors of TF/FVIIa improve mortality, even when given after the challenge. Surprisingly, all the evidence so far does not support that the beneficial effects of these inhibitors are due to their effects on clotting, but rather seem to be related to their effects on the inflammatory cascade. Identification of the molecular pathways of these anti-inflammatory effects is of critical importance since they seem to be key processes in the events leading to mortality in sepsis.

The interpretation of prolonged clotting times and decreased platelet numbers in patients with sepsis needs further study regarding their clinical implications since they may result from other processes than activation of coagulation.

The implications of moderately increased generation of thrombin in the absence of significant fibrinogen consumption, as occurs in the majority of septic patients, also needs a critical evaluation since such a generation actually may be beneficial by activating protein C.

Intervention studies with clotting inhibitors in patients should reveal the importance and the biological consequences of activation of the coagulation system in the pathogenesis of human sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hack CE, Aarden LA, Thijs LG. Role of cytokines in sepsis. Adv Immunol 1997; 66:101–195

    Article  PubMed  CAS  Google Scholar 

  2. Vervloet MG, Thijs LG, Hack CE. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock. Semin Thromb Hemost 1998; 24:33–44

    PubMed  CAS  Google Scholar 

  3. Griffin JH. Blood coagulation. The thrombin paradox. Nature 1995; 378:337–338

    Article  PubMed  CAS  Google Scholar 

  4. de Boer JP, Creasy AA, Chang A, et al. Activation patterns of coagulation and fibrinolysis in baboons following infusion with lethal or sublethal dose of Escherichia coli. Circ Shock 1993; 39:59–67

    PubMed  Google Scholar 

  5. de Boer JP, Creasey AA, Chang A, et al. Alpha-2-macroglobulin functions as an inhibitor of fibrinolytic, clotting, and neutrophilic proteinases in sepsis: studies using a baboon model. Infect Immun 1993; 61:5035–5043

    PubMed  Google Scholar 

  6. Semeraro N, Colucci M. Tissue factor in health and disease. Thromb Haemost 1997; 78:759–764

    PubMed  CAS  Google Scholar 

  7. Satta N, Toti F, Feugeas O, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 1994; 153:3245–3255

    PubMed  CAS  Google Scholar 

  8. Osterud B. Tissue factor expression by monocytes: regulation and pathophysiological roles. Blood Coagul Fibrinolysis 1998; 9 Suppl 1:S9–S14

    PubMed  CAS  Google Scholar 

  9. Saadi S, Holzknecht RA, Patte CP, et al. Complement-mediated regulation of tissue factor activity in endothelium. J Exp Med 1995; 182:1807–1814

    Article  PubMed  CAS  Google Scholar 

  10. Bevilacqua MP, Pober JS, Majeau GR, et al. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 1986; 83:4533–4537

    Article  PubMed  CAS  Google Scholar 

  11. Nawroth PP, Handley DA, Esmon CT, et al. Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc Natl Acad Sci USA 1986; 83:3460–3464

    Article  PubMed  CAS  Google Scholar 

  12. Bevilacqua MP, Pober JS, Majeau GR, et al. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984; 160:618–623

    Article  PubMed  CAS  Google Scholar 

  13. Colucci M, Balconi G, Lorenzet R, et al. Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 1983; 71:1893–1896

    Article  PubMed  CAS  Google Scholar 

  14. Moore KL, Andreoli SP, Esmon NL, et al. Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J. Clin Invest 1987; 79:124–130

    Article  PubMed  CAS  Google Scholar 

  15. Sandset PM. Tissue factor pathway inhibitor (TFPI)—an update. Haemostasis 1996; 26 Suppl 4:154–165

    PubMed  CAS  Google Scholar 

  16. Veer van’ t C V Mann KG. Regulation of tissue factor initiated thrombin generation by the stoichiometric inhibitors tissue factor pathway inhibitor antithrombin-III and heparin cofactor-II. J Biol Chem 1997; 2724367–4377

    Article  Google Scholar 

  17. Gailani D, Broze GJJ. Factor XI activation in a revised model of blood coagulation. Science 1991; 253:909–912

    Article  PubMed  CAS  Google Scholar 

  18. Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem 1991; 266:7353–7358

    PubMed  CAS  Google Scholar 

  19. Minnema MC, Pajkrt D, Wuillemin WA, et al. Activation of clotting factor XI without detectable contact activation in experimental human endotoxemia. Blood 1998; 92:3294–3301

    PubMed  CAS  Google Scholar 

  20. Minnema MC, ten Cate H, Hack CE. The role of factor XI in coagulation. A matter of revision. Semin Thromb Hemost 1999; 25:419–428

    PubMed  CAS  Google Scholar 

  21. Bornne von dem P, Bajzar L, Meijers JC, et al. Thrombin-mediated activation of factor XI results in a thrombin-activatable fibrinolysis inhibitor-dependent inhibition of fibrinolysis. J Clin Invest 1997; 99:2323–2327

    Article  Google Scholar 

  22. Borne von dem P, Meijers JC, Bouma BN. Feedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis. Blood 1995; 86:3035–3042

    Google Scholar 

  23. Minnema MC, Friederich PW, Levi M, et al. Enhancement of rabbit jugular vein thrombolysis by neutralization of factor XI. In vivo evidence for a role of factor XI as an anti-fibrinolytic factor. J Clin Invest 1998; 101:10–14

    Article  PubMed  CAS  Google Scholar 

  24. Uchiba M, Okajima K, Murakami K, et al. Effects of plasma kallikrein specific inhibitor and active-site blocked factor VIIa on the pulmonary vascular injury induced by endotoxin in rats. Thromb Haemost 1997; 78:1209–1214

    PubMed  CAS  Google Scholar 

  25. Uchiba M, Okajima K, Murakami K, et al. Effect of nafamostat mesilate on pulmonary vascular injury induced by lipopolysaccharide in rats. Am J Respir Crit Care Med 1997; 155:711–718

    PubMed  CAS  Google Scholar 

  26. Butler LD, Layman NK, Cain RL, et al. Interleukin 1-induced pathophysiology: induction of cytokines, development of histopathologic changes, and immunopharmacologic intervention. Clin Immunol Immunopathol 1989; 53:400–421

    Article  PubMed  CAS  Google Scholar 

  27. Remick DG, Strieter RM, Eskandari MK, et al. Role of tumor necrosis factor-alpha in lipopolysaccharide-induced pathologic alterations. Am J Pathol 1990; 136:49–60

    PubMed  CAS  Google Scholar 

  28. Movat HZ, Burrowes CE, Cybulsky MI, et al. Acute inflammation and a Shwartzman-like reaction induced by interleukin-1 and tumor necrosis factor. Synergistic action of the cytokines in the induction of inflammation and microvascular injury. Am J Pathol 1987; 129:463–476

    PubMed  CAS  Google Scholar 

  29. van der Poll T, Buller HR, ten Cate H, et al. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 1990; 322:1622–1627

    PubMed  Google Scholar 

  30. van der Poll T, Levi M, Buller HR, et al. Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med 1991; 174:729–732

    Article  PubMed  Google Scholar 

  31. Taylor FBJ, He SE, Chang AC, et al. Infusion of phospholipid vesicles amplifies the local thrombotic response to TNF and anti-protein C into a consumptive response. Thromb Haemost 1996; 75:578–584

    PubMed  CAS  Google Scholar 

  32. Jansen PM, Boermeester MA, Fischer E, et al. Contribution of interleukin-1 to activation of coagulation and fibrinolysis, neutrophil degranulation, and the release of secretory-type phospholipase A2 in sepsis: studies in nonhuman primates after interleukin-1 alpha administration and during lethal bacteremia. Blood 1995; 86:1027–1034

    PubMed  CAS  Google Scholar 

  33. Stouthard JM, Levi M, Hack CE, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost 1996; 76:738–742

    PubMed  CAS  Google Scholar 

  34. Cermak J, Key NS, Bach RR, et al. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993; 82:513–520

    PubMed  CAS  Google Scholar 

  35. Baars JW, de Boer JP, Wagstaff J, et al. Interleukin-2 induces activation of coagulation and fibrinolysis: resemblance to the changes seen during experimental endotoxaemia. Br J Haematol 1992; 82:295–301

    Article  PubMed  CAS  Google Scholar 

  36. Lauw FN, Dekkers PE, te VA, et al. Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees. J Infect Dis 1999; 179:646–652

    Article  PubMed  CAS  Google Scholar 

  37. Hack CE, Wagstaff J, Strack vSR, et al. Studies on the contact system of coagulation during therapy with high doses of recombinant IL-2; implications for septic shock. Thromb Haemost 1991; 65:497–503

    PubMed  CAS  Google Scholar 

  38. Biemond BJ, Levi M, ten Cate H, et al. Complete inhibition of endotoxin-induced coagulation activation in chimpanzees with a monoclonal Fab fragment against factor VII/VIIa. Thromb Haemost 1995; 73:223–230

    PubMed  CAS  Google Scholar 

  39. Levi M, ten Cate H, Bauer KA, et al. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J Clin Invest 1994; 93:114–120

    Article  PubMed  CAS  Google Scholar 

  40. van der Poll T, Levi M, van Deventer SJ, et al. Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood 1994; 83:446–451

    PubMed  Google Scholar 

  41. van Deventer SJ, Buller HR, ten Cate JW, et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990; 76:2520–2526

    PubMed  Google Scholar 

  42. Suffredini AF, Harpel PC, Parrillo JE. Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N Engl J Med 1989 320:1165–1172

    Article  PubMed  CAS  Google Scholar 

  43. van der Poll T, Levi M, Hack CE, et al. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 1994; 179:1253–1259

    Article  PubMed  Google Scholar 

  44. van der Poll T, Jansen PM, Van Zee KJ, et al. Pretreatment with a 55-kDa tumor necrosis factor receptor-immunoglobulin fusion protein attenuates activation of coagulation, but not of fibrinolysis, during lethal bacteremia in baboons. J Infect Dis 1997; 176:296–299

    Article  PubMed  Google Scholar 

  45. Higure A, Okamoto K, Hirata K, et al. Macrophages and neutrophils infiltrating into the liver are responsible for tissue factor expression in a rabbit model of acute obstructive cholangitis. Thromb Haemost 1996; 75:791–795

    PubMed  CAS  Google Scholar 

  46. Todoroki H, Higure A, Okamoto K, et al. Possible role of platelet-activating factor in the in vivo expression of tissue factor in neutrophils. J Surg Res 1998; 80:149–155

    Article  PubMed  CAS  Google Scholar 

  47. Drake TA, Cheng J, Chang A, et al. Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. Am J Pathol 1993; 142:1458–1470

    PubMed  CAS  Google Scholar 

  48. Semeraro N, Triggiani R, Montemurro P, et al. Enhanced endothelial tissue factor but normal thrombomodulin in endotoxin-treated rabbits. Thromb Res 1993; 71:479–486

    Article  PubMed  CAS  Google Scholar 

  49. Semeraro N, Triggiani R, Montemurro P, et al. Enhanced endothelial tissue factor but normal thrombomodulin in endotoxin-treated rabbits. Thromb Res 1993; 71:479–486

    Article  PubMed  CAS  Google Scholar 

  50. Mackman N, Sawdey MS, Keeton MR, et al. Murine tissue factor gene expression in vivo. Tissue and cell specificity and regulation by lipopolysaccharide. Am J Pathol 1993; 143:76–84

    PubMed  CAS  Google Scholar 

  51. Erlich J, Fearns C, Mathison J, et al. Lipopolysaccharide induction of tissue factor expression in rabbits. Infect Immun 1999; 67:2540–2546

    PubMed  CAS  Google Scholar 

  52. Hara S, Asada Y, Hatakeyama K, et al. Expression of tissue factor and tissue factor pathway inhibitor in rats lungs with lipopolysaccharide-induced disseminated intravascular coagulation. Lab Invest 1997; 77:581–589

    PubMed  CAS  Google Scholar 

  53. Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000; 95:930–935

    PubMed  CAS  Google Scholar 

  54. Dackiw AP, McGilvray ID, Woodside M, et al. Prevention of endotoxin-induced mortality by antitissue factor immunization. Arch Surg 1996; 131:1273–1278

    PubMed  CAS  Google Scholar 

  55. Taylor FBJ, Chang A, Ruf W, et al. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991; 33:127–134

    PubMed  Google Scholar 

  56. Taylor FB, Chang AC, Peer G, et al. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and-8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood 1998; 91:1609–1615

    PubMed  CAS  Google Scholar 

  57. Creasey AA, Chang AC, Feigen L, et al. Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 1993; 91:2850–2856

    Article  PubMed  CAS  Google Scholar 

  58. Carr C, Bild GS, Chang AC, et al. Recombinant E. coli-derived tissue factor pathway inhibitor reduces coagulopathic and lethal effects in the baboon gram-negative model of septic shock. Circ Shock 1994; 44:126–137

    PubMed  CAS  Google Scholar 

  59. Randolph MM, White GL, Kosanke SD, et al. Attenuation of tissue thrombosis and hemorrhage by ala-TFPI does not account for its protection against E. coli—a comparative study of treated and untreated non-surviving baboons challenged with LD100 E. coli. Thromb Haemost 1998; 79:1048–1053

    PubMed  CAS  Google Scholar 

  60. Bregengard C, Nordfang O, Wildgoose P, et al. The effect of two-domain tissue factor pathway inhibitor on endotoxin-induced disseminated intravascular coagulation in rabbits. Blood Coagul Fibrinolysis 1993; 4:699–706

    Article  PubMed  CAS  Google Scholar 

  61. Elsayed YA, Nakagawa K, Kamikubo YI, et al. Effects of recombinant human tissue factor pathway inhibitor on thrombus formation and its in vivo distribution in a rat DIC model. Am J Clin Pathol 1996; 106:574–583

    PubMed  CAS  Google Scholar 

  62. Warr TA, Rao LV, Rapaport SI. Disseminated intravascular coagulation in rabbits induced by administration of endotoxin or tissue factor: effect of anti-tissue factor antibodies and measurement of plasma extrinsic pathway inhibitor activity. Blood 1990; 75:1481–1489

    PubMed  CAS  Google Scholar 

  63. Camerota AJ, Creasey AA, Patla V, et al. Delayed treatment with recombinant human tissue factor pathway inhibitor improves survival in rabbits with gram-negative peritonitis. J Infect Dis 1998; 177:668–676

    Article  PubMed  CAS  Google Scholar 

  64. Taylor FBJ, Chang A, Esmon CT, et al: Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 1987; 79:918–925

    Article  PubMed  CAS  Google Scholar 

  65. Taylor FBJ, Emerson TEJ, Jordan R, et al. Antithrombin-III prevents the lethal effects of Escherichia coli infusion in baboons. Circ Shock 1988; 26:227–235

    PubMed  CAS  Google Scholar 

  66. Bleeker WK, Teeling JL, Verhoeven AJ, et al. Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase. Blood 2000; 95:1856–1861

    PubMed  CAS  Google Scholar 

  67. Camerer E, Huang W, Coughlin SR. Tissue factor-and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 2000; 97:5255–5260

    Article  PubMed  CAS  Google Scholar 

  68. Petersen LC, Thastrup O, Hagel G, et al. Exclusion of known protease-activated receptors in factor VIIa-induced signal transduction. Thromb Haemost 2000; 83:571–576

    PubMed  CAS  Google Scholar 

  69. Cunningham MA, Romas P, Hutchinson P, et al. Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages. Blood 1999; 94:3413–3420

    PubMed  CAS  Google Scholar 

  70. Taylor FBJ, Chang AC, Peer GT, et al. DEGR-factor Xa blocks disseminated intravascular coagulation initiated by Escherichia coli without preventing shock or organ damage. Blood 1991; 78:364–368

    PubMed  Google Scholar 

  71. Harada N, Okajima K, Kushimoto S, et al. Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic level of prostacyclin. Blood 1999; 93:157–164

    PubMed  CAS  Google Scholar 

  72. Taylor FBJ, Steams-Kurosawa DJ, Kurosawa S, et al. The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood 2000; 95:1680–1686

    PubMed  CAS  Google Scholar 

  73. Levi M, Hack CE, de Boer JP, et al. Reduction of contact activation related fibrinolytic activity in factor XII deficient patients. Further evidence for the role of the contact system in fibrinolysis in vivo. J Clin Invest 1991; 88:1155–1160

    Article  PubMed  CAS  Google Scholar 

  74. Ichinose M, Barnes PJ. Bradykinin-induced airway microvascular leakage and bronchoconstriction are mediated via a bradykinin B2 receptor. Am Rev Respir Dis 1990; 142:1104–1107

    PubMed  CAS  Google Scholar 

  75. Wachtfogel YT, Pixley RA, Kucich U, et al. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 1986; 67:1731–1737

    PubMed  CAS  Google Scholar 

  76. Wachtfogel YT, Kucich U, James HL, et al. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 1983; 72:1672–1677

    Article  PubMed  CAS  Google Scholar 

  77. Schapira M, Despland E, Scott CF, et al. Purified human plasma kallikrein aggregates human blood neutrophils. J Clin Invest 1982; 69:1199–1202

    Article  PubMed  CAS  Google Scholar 

  78. Nies AS, Forsyth RP, Williams HE, et al. Contribution of kinins to endotoxin shock in unanesthetized Rhesus monkeys. Circ Res 1968; 22:155–164

    PubMed  CAS  Google Scholar 

  79. Pixley RA, DeLa CR, Page JD, et al. Activation of the contact system in lethal hypotensive bacteremia in a baboon model. Am J Pathol 1992; 140:897–906

    PubMed  CAS  Google Scholar 

  80. Pixley RA, De La Cadena R, Page JD, et al. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J Clin Invest 1993; 91:61–68

    Article  PubMed  CAS  Google Scholar 

  81. Jansen PM, Pixley RA, Brouwer M, et al. Inhibition of factor XII in septic baboons attenuates the activation of complement and fibrinolytic systems and reduces the release of interleukin-6 and neutrophil elastase. Blood 1996; 87:2337–2344

    PubMed  CAS  Google Scholar 

  82. Berg T, Schlichting E, Ishida H, et al. Kinin antagonist does not protect against the hypotensive response to endotoxin, anaphylaxis or acute pancreatitis. J Pharmacol Exp Ther 1989; 251:731–734

    PubMed  CAS  Google Scholar 

  83. Colman RW, Flores DN, De La Cadena RA, et al. Recombinant alpha 1-antitrypsin Pittsburgh attenuates experimental gram-negative septicemia. Am J Pathol 1988; 130:418–426

    PubMed  CAS  Google Scholar 

  84. Harper PL, Taylor FB, DeLa CR, et al. Recombinant antitrypsin Pittsburgh undergoes proteolytic cleavage during E. coli sepsis and fails to prevent the associated coagulopathy in a primate model. Thromb Haemost 1998; 80:816–821

    PubMed  CAS  Google Scholar 

  85. Guerrero R, Velasco F, Rodriguez M, et al. Endotoxin-induced pulmonary dysfunction is prevented by C1-esterase inhibitor. J Clin Invest 1993; 91:2754–2760

    Article  PubMed  CAS  Google Scholar 

  86. Jansen PM, Eisele B, de J, I, et al. Effect of Cl inhibitor on inflammatory and physiologic response patterns in primates suffering from lethal septic shock. J Immunol 1998; 160:475–484

    PubMed  CAS  Google Scholar 

  87. Morrison DC, Cochrane CG. Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 1974; 140:797–811

    Article  PubMed  CAS  Google Scholar 

  88. Herwald H, Morgelin M, Olsen A, et al. Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases. Nat Med 1998; 4:298–302

    Article  PubMed  CAS  Google Scholar 

  89. DeLa CR, Suffredini AF, Page JD, et al. Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. Blood 1993; 81:3313–3317

    Google Scholar 

  90. Hack CE, Nuijens JH, Strack vSR, et al. A model for the interplay of inflammatory mediators in sepsis—a study in 48 patients. Intensive Care Med 1990; 16 Suppl 3:S187–S191

    Article  PubMed  Google Scholar 

  91. Mestries JC, Kruithof EK, Gascon MP, et al. In vivo modulation of coagulation and fibrinolysis by recombinant glycosylated human interleukin-6 in baboons. Eur Cytokine Netw 1994; 5:275–281

    PubMed  CAS  Google Scholar 

  92. Citarella F, Felici A, Brouwer M, et al. Interleukin-6 downregulates factor XII production by human hepatoma cell line (HepG2). Blood 1997; 90:1501–1507

    PubMed  CAS  Google Scholar 

  93. Niessen RW, Lamping RJ, Jansen PM, et al. Antithrombin acts as a negative acute phase protein as established with studies on HepG2 cells and in baboons. Thromb Haemost 1997; 78:1088–1092

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hack, C.E. (2002). The Coagulation System in Sepsis. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_39

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics