Skip to main content

The Brain in Sepsis

  • Chapter
The Sepsis Text
  • 294 Accesses

Conclusion

Septic encephalopathy is an early manifestation of sepsis. At times it can be profound and patients with septic encephalopathy have a higher mortality than those without. Its pathogenesis is uncertain but it has the hallmarks of a global metabolic brain injury and even if severe it appears to be reversible. Nevertheless some preliminary animal work suggests that neuronal injury does occur but it remains to be seen if significant damage occurs in humans. Studies considering long term neurological or neuro-psychiatric sequelae are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pine RW, Wertz MJ, Lennard ES, Dellinger EP, Carrico CJ, Minshew BH. Determinants of organ malfunction or death in patients with intra-abdominal sepsis. A discriminant analysis. Arch Surg, 1983; 118:242–249

    PubMed  CAS  Google Scholar 

  2. Sprung CL, Peduzzi PN, Shatney CH, et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med 1990; 18:801–806

    PubMed  CAS  Google Scholar 

  3. Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA. The encephalopathy associated with septic illness. Clin Invest Med 1990; 13:297–304

    PubMed  CAS  Google Scholar 

  4. Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 1996; 275:470–473

    Article  PubMed  CAS  Google Scholar 

  5. Frerichs FT, Murchison C. A Clinical Treatise on Diseases of the Liver. New Sydenham Society, London, 1860

    Google Scholar 

  6. Chadwick J, Mann WN. The Medical Work of Hippocrates. Chadwick J, Mann WN (eds) Blackwell, Oxford, 1950. pp: 50–223

    Google Scholar 

  7. Walsh JM. Observations on the symptomatology and pathogensis of hepatic coma. Q J Med 1951; 20:421–438

    Google Scholar 

  8. Mendez MF. Delerium. Neurology in Clinical Practice. In: Bradley WG, Daroff RB, Fenichel GM (Eds) Butterworth-Heinemann, Boston 1996, pp: 29–38

    Google Scholar 

  9. Moreno R, Vincent JL, Matos R, et al., The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med 1999; 25: 686–696

    PubMed  CAS  Google Scholar 

  10. Adelson-Mitty J, Fink MP, Lisbon A. The value of lumbar puncture in the evaluation of critically ill, non-immunosuppressed, surgical patients: a retrospective analysis of 70 cases. Intensive Care Med 1997; 23:749–752

    Article  PubMed  CAS  Google Scholar 

  11. Jackson AC, Gilbert JJ, Young GB, Bolton CF. The encephalopathy of sepsis. Can J Neurol Sci 1985; 12:303–307

    PubMed  CAS  Google Scholar 

  12. Young GB, Kreeft JH, McLachlan RS, Demelo J. EEG and clinical associations with mortality in comatose patients in a general intensive care unit. J Clin Neurophysiol 1999; 16:354–360

    PubMed  CAS  Google Scholar 

  13. Young GB. Metabolic and inflammatory cerebral diseases: electrophysiological aspects. Can J Neurol Sci 1998; 25:S16–S20

    PubMed  CAS  Google Scholar 

  14. Bleck TP, Smith MC, Pierre-Louis SJ, Jares JJ, Murray J, Hansen CA. Neurologic complications of critical medical illnesses. Crit Care Med 1993; 21:98–103

    PubMed  CAS  Google Scholar 

  15. Creteur J, De Backer D, Vincent JL, A dobutamine test can disclose hepatosplanchnic hypoperfusion in septic patients. Am J Respir Crit Care Med 1999; 160:839–845

    PubMed  CAS  Google Scholar 

  16. De Backer D, Creteur J, Zhang H, Norrenberg M, Vincent JL. Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med 1997; 156:1099–1104

    PubMed  Google Scholar 

  17. Bellomo R, Kellum JA, Wisniewski SR, Pinsky MR. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med 1999; 159:1186–1192

    PubMed  CAS  Google Scholar 

  18. Ekstrom-Jodal B, Haggendal J, Larsson LE, Westerlind A. Cerebral hemodynamics, oxygen uptake and cerebral arteriovenous differences of catecholamines following E. coli endotoxin in dogs. Acta Anaesthesiol Scand 1982; 26:446–452

    PubMed  CAS  Google Scholar 

  19. Ekstrom-Jodal B, Haggendal E, Larsson LE. Cerebral blood flow and oxygen uptake in endotoxic shock. An experimental study in dogs. Acta Anaesthesiol Scand 1982; 26:163–170

    PubMed  CAS  Google Scholar 

  20. Ekstrom-Jodal B, Larsson LE. The effects of high dose methylprednisolone or fluid volume expansion on cerebral haemodynamics and oxygen uptake in endotoxic shock. An experimental study in dogs. Acta Anaesthesiol Scand 1982; 26:175–179

    PubMed  CAS  Google Scholar 

  21. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med 1989; 17:399–403

    PubMed  CAS  Google Scholar 

  22. Kreimeier U, Ruiz-Morales M, Messmer K. Comparison of the effects of volume resuscitation with Dextran 60 vs. Ringer’s lactate on central hemodynamics, regional blood flow, pulmonary function, and blood composition during hyperdynamic endotoxemia. Circ Shock 1993; 39:89–99

    PubMed  CAS  Google Scholar 

  23. Kreimeier U, Hammersen F, Ruiz-Morales M, Yang Z, Messmer K. Redistribution of intraorgan blood flow in acute, hyperdynamic porcine endotoxemia. Eur Surg Res 1991; 23:85–99

    PubMed  CAS  Google Scholar 

  24. Smith SM, Padayachee S, Modaresi KB, Smithies MN, Bihari DJ. Cerebral blood flow is proportional to cardiac index in patients with septic shock. J Crit Care 1998; 13:104–109

    Article  PubMed  CAS  Google Scholar 

  25. Newman B, Gelb AW, Lam AM. The effect of isoflurane-induced hypotension on cerebral blood flow and cerebral metabolic rate for oxygen in humans. Anesthesiology 1986; 64:307–310

    PubMed  CAS  Google Scholar 

  26. Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg 1990; 71:49–54

    PubMed  Google Scholar 

  27. Ostapkovich ND, Baker KZ, Fogarty-Mack P, Sisti MB, Young WL. Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2O and fentanyl/N2O anesthesia. Anesthesiology 1998; 89:358–363

    PubMed  CAS  Google Scholar 

  28. Cheng MA, Hoffman WE, Baughman VL, Albrecht RF. The effects of midazolam and sufentanil sedation on middle cerebral artery blood flow velocity in awake patients. J Neurosurg Anesthesiol 1993; 5:232–236

    PubMed  CAS  Google Scholar 

  29. Parker JL, TE Emerson Jr. Cerebral hemodynamics, vascular reactivity, and metabolism during canine endotoxin shock. Circ Shock 1977; 4:41–53

    PubMed  CAS  Google Scholar 

  30. Sari A, Yamashita S, Ohosita S, et al. Cerebrovascular reactivity to CO2 in patients with hepatic or septic encephalopathy. Resuscitation 1990; 19:125–134

    Article  PubMed  CAS  Google Scholar 

  31. Straver JS, Keunen RW, Stam CJ, et al. Transcranial Doppler and systemic hemodynamic studies in septic shock. Neurol Res 1996; 18:313–318

    PubMed  CAS  Google Scholar 

  32. Matta BF, Stow PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth 1996; 76:790–794

    PubMed  CAS  Google Scholar 

  33. Pendlebury WW, Perl DP, Munoz DG. Multiple microabscesses in the central nervous system: a clinicopathologic study. J Neuropathol Exp Neurol 1989; 48:290–300

    PubMed  CAS  Google Scholar 

  34. Parker JC Jr, McCloskey JJ, Lee RS. Human cerebral candidosis—a postmortem evaluation of 19 patients. Hum Pathol 1981; 12:23–28

    PubMed  Google Scholar 

  35. Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Colch) 1999; 96:461–466

    Article  CAS  Google Scholar 

  36. Clawson CC, Hartmann JF, Vernier RL. Electron microscopy of the effect of gramnegative endotoxin on the blood-brain barrier. J Comp Neurol 1966; 127:183–198

    PubMed  CAS  Google Scholar 

  37. Freund HR, Muggia-Sullam M, LaFrance R, Holroyde J, Fischer JE. Regional brain amino acid and neurotransmitter derangements during abdominal sepsis and septic encephalopathy in the rat. The effect of amino acid infusions. Arch Surg 1986; 121:209–216

    PubMed  CAS  Google Scholar 

  38. Freund HR, Muggia-Sullam M, Peiser J, Melamed E. Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. J Surg Res 1985; 38:267–271

    PubMed  CAS  Google Scholar 

  39. Sprung CL, Cerra FB, Freund HR, et al. Amino acid alterations and encephalopathy in the sepsis syndrome. Crit Care Med 1991; 19:753–757

    PubMed  CAS  Google Scholar 

  40. Mizock BA, Sabelli HC, Dubin A, Javaid JI, Poulos A, Rackow EC. Septic encephalopathy. Evidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch Intern Med 1990; 150:443–449

    Article  PubMed  CAS  Google Scholar 

  41. Shimizu I, Adachi N, Liu K, Lei B, Nagaro T, Arai T. Sepsis facilitates brain serotonin activity and impairs learning ability in rats. Brain Res 1999; 830:94–100

    PubMed  CAS  Google Scholar 

  42. Soejima Y, Fujii Y, Ishikawa T, Takeshita H, Maekawa T. Local cerebral glucose utilization in septic rats. Crit Care Med 1990; 18:423–427

    PubMed  CAS  Google Scholar 

  43. Albrecht J, Jones EA. Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 1999; 170:138–146

    Article  PubMed  CAS  Google Scholar 

  44. Rothuizen J, de Kok Y, Slob A, Mol JA. GABAergic inhibition of the pituitary release of adrenocorticotropin and alpha-melanotropin is impaired in dogs with hepatic encephalopathy. Domest Anim Endocrinol 1996; 13:59–68

    Article  PubMed  CAS  Google Scholar 

  45. Mousseau DD, Butterworth RF. Current theories on the pathogenesis of hepatic encephalopathy. Proc Soc Exp Biol Med 1994; 206:329–344

    PubMed  CAS  Google Scholar 

  46. Basile AS. The contribution of endogenous benzodiazepine receptor ligands to the pathogenesis of hepatic encephalopathy. Synapse 1991; 7:141–150

    Article  PubMed  CAS  Google Scholar 

  47. Levy LJ, Losowsky MS. Plasma gamma aminobutyric acid concentrations provide evidence of different mechanisms in the pathogenesis of hepatic encephalopathy in acute and chronic liver disease. Hepatogastroenterology 1989; 36:494–498

    PubMed  CAS  Google Scholar 

  48. Kadoi Y, Saito S. An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med 1996; 24:298–305

    Article  PubMed  CAS  Google Scholar 

  49. Loscher W, Kretz FJ, Tung LC, Dillinger U. Reduction of highly elevated plasma levels of gamma-aminobutyric acid does not reverse hepatic coma. Hepatogastroenterology 1989; 36:504–505

    PubMed  CAS  Google Scholar 

  50. Thirlby RC, Fenster LF, Coatsworth JJ, Petty F. Reversal of chronic hepatic encephalopathy by colonic exclusion: poor correlation with blood GABA levels. Am J Gastroenterol 1990; 85:1637–1641

    PubMed  CAS  Google Scholar 

  51. Komatsubara T, Kadoi Y, Saito S. Augmented sensitivity to benzodiazepine in septic shock rats. Can J Anaesth 1995; 42:937–943

    Article  PubMed  CAS  Google Scholar 

  52. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262:689–695

    PubMed  CAS  Google Scholar 

  53. Perry VH, Brown MC, Andersson PB. Macrophage responses to central and peripheral nerve injury. Adv Neurol 1993; 59:309–314

    PubMed  CAS  Google Scholar 

  54. Andersson PB, Perry VH, Gordon S. The CNS acute inflammatory response to excitotoxic neuronal cell death. Immunol Lett 1991; 30:177–181

    Article  PubMed  CAS  Google Scholar 

  55. Jeppsson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE. Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 1981; 141:136–142

    Article  PubMed  CAS  Google Scholar 

  56. Deng X, Wang X, Andersson R. Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J Appl Physiol 1995; 78:2052–2061

    PubMed  CAS  Google Scholar 

  57. Hariri RJ, Ghajar JB, Bahramian K, Sharif S, Bane PS. Alterations in intracranial pressure and cerebral blood volume in endotoxemia. Surg Gynecol Obstet 1993; 176:155–166

    PubMed  CAS  Google Scholar 

  58. Pehrson PO, Lofgren A, Gaines H, Toikkanen S. Brain edema in toxic shock syndrome. The first fatal case in Sweden? Lakartidningen 1985; 82:1593–1594

    PubMed  CAS  Google Scholar 

  59. Ambrose RE, Cheung H. Case report: fatal non-menstrual toxic shock in a Chinese woman. Clin Radiol 1992; 45:355–357

    Article  PubMed  CAS  Google Scholar 

  60. Smith DB, Gulinson J. Fatal cerebral edema complicating toxic shock syndrome. Neurosurgery 1988; 22:598–599

    PubMed  CAS  Google Scholar 

  61. Fillenz M, Lowry JP, Boutelle MG, Fray AE. The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol Scand 1999; 167:275–284

    Article  PubMed  CAS  Google Scholar 

  62. Wiesinger H, Hamprecht B, Dringen R. Metabolic pathways for glucose in astrocytes. Glia 1997; 21:22–34

    Article  PubMed  CAS  Google Scholar 

  63. Bezzi P, Vesce S, Panzarasa P, Volterra A. Astrocytes as active participants of glutamatergic function and regulators of its homeostasis. Adv Exp Med Biol 1999; 468:69–80

    PubMed  CAS  Google Scholar 

  64. Aschner M. Immune and inflammatory responses in the CNS: modulation by astrocytes. Toxicol Lett 1998; 102–103:283–287

    PubMed  Google Scholar 

  65. Koller H, Thiem K, Siebler M. Tumour necrosis factor-alpha increases intracellular Ca2+ and induces a depolarization in cultured astroglial cells. Brain 1996; 119:2021–2027

    PubMed  Google Scholar 

  66. Benos DJ, Hahn BH, Bubien JK, Ghosh SK, et al. Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex. Proc Natl Acad Sci USA 1994; 91:494–498

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Philips, B., Bennett, D. (2002). The Brain in Sepsis. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_36

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics