Skip to main content

Fluid Administration

  • Chapter
  • 294 Accesses

Conclusion

Despite the plethora of physiological monitoring commonly available in the ICU there remain some challenges in the avoidance of hypovolemia in sepsis. Interpretation of physiological data assumes a reference point of normality or acceptability. Normality is a statistical concept from which ‘acceptable’ cannot be derived for the individual. Avoiding hypovolemia in sepsis requires a high degree of suspicion and a ‘try it and see’ approach with corrective treatment. The fluid challenge approach provides a safe method of confirming or refuting the diagnosis while titrating appropriate volume replacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parillo J, Parker M, Natanson C, et al. Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction and therapy. Ann Intern Med 1990; 113:227–242

    Google Scholar 

  2. Parker M, Shelhamer J, Bacharach S, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100:483–490

    PubMed  CAS  Google Scholar 

  3. Ognibene F, Parker M, Natanson C, et al. Depressed left ventricular performance: response to volume infusion in patients with sepsis and septic shock. Chest 1988; 93:903–910

    PubMed  CAS  Google Scholar 

  4. Rackow E, Astiz M. Pathophysiology and treatment of septic shock. JAMA 1991; 266:548–554

    Article  PubMed  CAS  Google Scholar 

  5. Wilson M, Chou M, Spain D, et al. Fluid resuscitation attenuates early cytokine mRNA expression after peritonitis. J Trauma 1996; 41:622–627

    PubMed  CAS  Google Scholar 

  6. von Ott aus St Petersburg. Über den Einfluß der kochsalzinfusion auf den verbluteten Organismus im Vergleich mit anderen zur Transfusion verwendeten Flüssigkeiten. Arch Path Anat 1883; 93:114–168

    Google Scholar 

  7. Bayliss W. Methods of raising a low arterial pressure. Proc Roy Soc London 1917; 89:380–393

    Google Scholar 

  8. Sugarman H, Diaco J, Pollak T, et al. Physiologic management of septicemic shock in man. Surg Forum 1971; 22:3–5

    Google Scholar 

  9. Cortez A, Zito J, Lucas C. Mechanism of inappropriate polyuria in septic patients. Arch Surg 1977; 172:471–476

    Google Scholar 

  10. Rackow E, Astiz M. Mechanisms and management of septic shock. Crit Care Clin 1993; 9:219–237

    PubMed  CAS  Google Scholar 

  11. Weil M, Nishjima H. Cardiac output in bacterial shock. Am J Med 1978; 64:920–923

    PubMed  CAS  Google Scholar 

  12. Dei CL, Metra M, Visioli O. Clinical pharmacology of inodilators. J Cardiovasc Pharmacol 1989; 14 (suppl 8):S60–S71

    Google Scholar 

  13. Takaoka H, Takeuchi M, Odake M, et al. Comparison of the effects on arterial-ventricular coupling between phosphodiesterase inhibitor and dobutamine in the diseases human heart. J Am Coll Cardiol 1993; 22:598–606

    Article  PubMed  CAS  Google Scholar 

  14. van Zwieten PA. Receptor-mediated inotropic drugs. Eur Heart J 1988; 9 (Suppl H):85–90

    PubMed  Google Scholar 

  15. Webb A, Moss R, Tighe D, et al. The effects of dobutamine, dopexamine and fluid on hepatic histological responses to porcine faecal peritonitis. Intensive Care Med 1991; 17:487–493

    Article  PubMed  CAS  Google Scholar 

  16. Metildi LA, Shackford SR, Virgilio RW, et al. Crystalloid versus colloid in fluid resuscitation of patients with severe pulmonary insufficiency. Surg Gynecol Obstet 1984; 158:207–212

    PubMed  CAS  Google Scholar 

  17. Falk J, Rackow E, Weil M. Colloid and crystalloid fluid resuscitation. Acute Care 1983; 10:59–94

    PubMed  Google Scholar 

  18. Velanovich V. Crystalloid versus colloid fluid resuscitation: A meta-analysis of mortality. Surgery 1989; 105:65–71

    PubMed  CAS  Google Scholar 

  19. Virgilio R, Rice C, Smith D, et al. Crystalloid vs. colloid resuscitation: is one better. Surgery 1979; 85:129–139

    PubMed  CAS  Google Scholar 

  20. Gregersen ML, Rawson RA. Blood volume. Physiol Rev 1959; 39:307–342

    PubMed  CAS  Google Scholar 

  21. Myhre L, Brown D, Hall F, et al. The use of carbon monoxide and T-1824 for determining blood volume. Clin Chem 1968; 14:1197–1205

    PubMed  CAS  Google Scholar 

  22. Weil M, Shubin H, Rosoff L. Fluid repletion in circulatory shock — central venous pressure and other practical guides. JAMA 1965; 192:668–674

    PubMed  CAS  Google Scholar 

  23. Barriot P, Riou B. Hemorrhagic shock with paradoxical bradycardia. Intensive Care Med 1987; 13:203–207

    Article  PubMed  CAS  Google Scholar 

  24. Hagan R, Diaz F, Horvath S. Plasma volume changes with movement to supine and standing positions. J Appl Physiol 1978; 45:414–418

    PubMed  CAS  Google Scholar 

  25. Widgren B, Berglund G, Wikstrand J, et al. Reduced venous compliance in normotensive men with positive family histories of hypertension. J Hypertens 1992; 10:459–465

    PubMed  CAS  Google Scholar 

  26. Amoroso P, Greenwood R. Posture and central venous pressure measurement in circulatory volume depletion. Lancet 1989; 2:258–260

    PubMed  CAS  Google Scholar 

  27. Baek S, Makabali G, Byron-Brown C, et al. Plasma expansion in surgical patients with high central venous pressure; the relationship of blood volume to hematocrit, CVP, pulmonary wedge pressure, and cardiorespiratory changes. Surgery 1975; 78:304–315

    PubMed  CAS  Google Scholar 

  28. Packman M, Rackow E. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 1983; 11:165–169

    PubMed  CAS  Google Scholar 

  29. Shasby D, Dauber I, Pfister S, et al. Swan-Ganz catheter location and left atrial pressure determine the accuracy of the wedge pressure when positive end-expiratory pressure is used. Chest 1981; 80:666–670

    PubMed  CAS  Google Scholar 

  30. Elliot C, Zimmerman G, Clemmer T. Complications of pulmonary artery catheterisation in the care of critically ill patients. A prospective study. Chest 1979; 76:647–652

    Google Scholar 

  31. Connors A, Speroff T, Dawson N, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276:889–897

    Article  PubMed  Google Scholar 

  32. Kubicek W, Karnegis J, Patterson R, et al. Development and evaluation of an impedance cardiac output system. Aerosp Med 1966; 37:1208–1212

    PubMed  CAS  Google Scholar 

  33. Singer M, Clarke J, Bennett E. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med 1989; 17:447–452

    PubMed  CAS  Google Scholar 

  34. Chiolero R, Gay L, Cotting J, et al. Assessment of changes in body water by bioimpedance in acutely ill surgical patients. Intensive Care Med 1992; 18:322–326

    PubMed  CAS  Google Scholar 

  35. Singer M, Allen M, Webb A, et al. Effects of alterations in left ventricular filling, contractility, and systemic vascular resistance on the ascending aortic blood velocity waveform of normal subjects. Crit Care Med 1991; 19:1138–1145

    PubMed  CAS  Google Scholar 

  36. Gutierrez G, Clark C, Brown SD, et al. Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 1994; 150:324–329

    PubMed  CAS  Google Scholar 

  37. Dantzker D. The gastrointestinal tract: the canary of the body? JAMA 1993; 270:1247–1248.

    Article  PubMed  CAS  Google Scholar 

  38. Hamilton-Davies C, Mythen M, Salmon J, et al. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 1997; 23:276–281

    Article  PubMed  CAS  Google Scholar 

  39. Gram C, Fiddian-Green R, Pittenger G, et al. Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 1984; 56:1065–1069

    Google Scholar 

  40. Gutierrez G, Brown S. Gastric tonometry: a new monitoring modality in the intensive care unit. J Intensive Care Med 1995; 10:34–1044

    PubMed  CAS  Google Scholar 

  41. Webb A. The fluid challenge. In Webb A, Shapiro M, Singer M, Suter P (Eds) Oxford textbook of Critical Care, Oxford University Press, Oxford, 1999, pp:32–34

    Google Scholar 

  42. Shoemaker W, Schluchter M, Hopkins JA, et al. Comparison of the relative effectiveness of colloids and crystalloids in emergency resuscitation. Am J Surg 1981; 142:73–84

    PubMed  CAS  Google Scholar 

  43. Shoemaker W. Comparisons of the relative effectiveness of whole blood transfusions and various types of fluid therapy in resuscitation. Crit Care Med 1976; 4:71–78

    PubMed  CAS  Google Scholar 

  44. Rackow E, Falk J, Fein I. Fluid resuscitation in shock: a comparison of cardiorespiratory effects of albumin, hetastarch and saline solutions in patients with hypovolemic shock. Crit Care Med 1983; 11:839–850

    PubMed  CAS  Google Scholar 

  45. Nylander W, Hammon J, Roselli R, et al. Comparison of the effects of saline and homologous plasma infusion on lung fluid balance during endotoxemia in unanesthetized sheep. Surgery 1981; 90:221–228

    PubMed  Google Scholar 

  46. Appel P, Shoemaker W. Evaluation of fluid therapy in adult respiratory failure. Crit Care Med 1981; 9:862–869

    PubMed  CAS  Google Scholar 

  47. Staub N, Nagano H, Pearce M. Pulmonary edema in dogs, especially the sequence of fluid accumulation in the lung. J Appl Physiol 1967; 2:227–240

    Google Scholar 

  48. Rackow E, Astiz M, Janz T, et al. Absence of pulmonary edema during peritonitis and shock in rats. J Lab Clin Med 1989; 112:264–269

    Google Scholar 

  49. Schierhout G, Roberts I. Fluid resuscitation with colloids or crystalloids in critically ill patients: a systematic review of randomised trials. Br Med J 1998; 316:961–964

    CAS  Google Scholar 

  50. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: a systematic review of randomised controlled trials. Br Med J 1998; 317:235–239

    Google Scholar 

  51. Choi P, Yip G, Quinonez L, et al. Crystalloids versus colloids in fluid resuscitation: a systematic review. Crit Care Med 1999; 27:200–210

    PubMed  CAS  Google Scholar 

  52. Webb A. Crystalloid or colloid resuscitation. Are we any the wiser? Crit Care 1999; 3:R25–R28

    Article  PubMed  Google Scholar 

  53. Funk W, Baldinger V. Microcirculatory perfusion during volume therapy. Anesthesiology 1995; 82:975–982

    PubMed  CAS  Google Scholar 

  54. Webb A, Barclay S, Bennett E. In vitro colloid osmotic pressure of commonly used plasma expanders and substitutes: A study of the diffusibility of colloid molecules. Intensive Care Med 1989; 15:116–120

    Article  PubMed  CAS  Google Scholar 

  55. Zikria B, King T, Stanford J, et al. A biophysical approach to capillary permeability. Surgery 1989; 105:625–631

    PubMed  CAS  Google Scholar 

  56. Webb A, Tighe D, Moss R, et al. Advantages of a narrow-range, medium molecular weight hydroxyethyl starch for volume maintenance in a porcine model of fecal peritonitis. Crit Care Med 1991; 19:409–416

    PubMed  CAS  Google Scholar 

  57. Webb A, Moss R, Tighe D, et al. A narrow range, medium molecular weight pentastarch reduces structural organ damage in a hyperdynamic porcine model of sepsis. Intensive Care Med 1992; 18:348–355

    Article  PubMed  CAS  Google Scholar 

  58. Collis R, Collins P, Gutteridge C, et al. The effects of hydroxyethyl starch and other plasma volume substitutes on endothelial cell activation; an in vitro study. Intensive Care Med 1994; 20:37–41

    PubMed  CAS  Google Scholar 

  59. Boldt J, Muller M, Heesen M, et al. Influence of different volume therapies and pentoxifylline infusion on circulatory soluble adhesion molecules in critically ill patients. Crit Care Med 1996; 24:358–391

    Google Scholar 

  60. Morisaki H, Bloos F, Keys J, et al. Compared with crystalloid, colloid therapy slows progression of extrapulmonary tissue injury in septic sheep. J Appl Physiol 1994; 77:1507–1518

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Webb, A.R. (2002). Fluid Administration. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_22

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics