Skip to main content

Blood Lactate Concentrations in Sepsis

  • Chapter
  • 305 Accesses

Conclusion

An increased blood lactate concentration is clearly a marker for circulatory failure and tissue hypoxia, including that associated with sepsis. Whether other mechanisms cause or contribute to lactate elevations in sepsis remains to be clearly elucidated. Hypermetabolism induced by a systemic inflammatory state, along with dysregulation of the microcirculatory distribution of perfusion, are likely explanations for the co-existence of hyperlactatemia, a hyperdynamic circulation, and a low oxygen extraction state as seen in many cases of clinical sepsis. High blood lactate levels in the patient with sepsis should alert the clinician to consider the possibility of inadequate tissue perfusion and oxygenation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astiz ME, Rackow EC, Falk JL, et al. Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med 1987; 15:26–28

    PubMed  CAS  Google Scholar 

  2. Bakker J, Gris P, Coffernils M, et al. Serial blood lactate levels can predict the development ofmultiple organ failure following septic shock. Am J Surg 1996; 171:221–226

    Article  PubMed  CAS  Google Scholar 

  3. Bakker J, Coffernils M, Leon M, et al. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 1991; 99:956–962

    PubMed  CAS  Google Scholar 

  4. Bernardin G, Pradier C, Tiger F, et al. Blood pressure and arterial lactate level are early predictors of short-term survival in human septic shock. Intensive Care Med 1996; 22:17–25

    PubMed  CAS  Google Scholar 

  5. Chrusch C, Bands C, Bose D, et al. Impaired hepatic extraction and increased splanchnic production contribute to lactic acidosis in canine sepsis. Am J Respir Crit Care Med 2000; 161:517–526

    PubMed  CAS  Google Scholar 

  6. Day NPJ, Phu NH, Bethell DP, et al. The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet 1996; 348:219–223

    PubMed  CAS  Google Scholar 

  7. Duke TD, Bun W, South M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med 1997; 23:684–692

    Article  PubMed  CAS  Google Scholar 

  8. Esen F, Telci L, Cakar N, et al. Evaluation of gastric intramucosal pH measurements with tissue oxygenation indices in patients with severe sepsis. Clin Intensive Care 1996; 7:180–189

    Article  Google Scholar 

  9. Friedman G, De Backer D, Shahla M, et al. Oxygen supply dependency can characterize septic shock. Intensive Care Med 1998; 24:118–123

    Article  PubMed  CAS  Google Scholar 

  10. Friedman G, Berlot G, Kahn RJ, et al. Combined measurement of blood lactate and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 1995; 23:1184–1193

    PubMed  CAS  Google Scholar 

  11. Gore DC, Jahoor F, Hibbert JM, et al. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996; 224:97–102

    Article  PubMed  CAS  Google Scholar 

  12. Groeneveld AB, Hartemink KJ, de Groot MC, et al. Circulating endothelin and nitrate-nitrite relate to hemodynamic and metabolic variables in human septic shock. Shock 1999; 11:160–166

    PubMed  CAS  Google Scholar 

  13. Haupt MT, Gilbert EM, Carlson RW. Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev Respir Dis 1985; 131:912–916

    PubMed  CAS  Google Scholar 

  14. Kaufman BS, Rackow EC, Falk JL. The relationship between oxygen delivery and consumption during fluid resuscitation of hypovolemic and septic shock. Chest 1984; 85:336–340

    PubMed  CAS  Google Scholar 

  15. Levy B, Bollaert P-E, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 1997; 23:282–287

    Article  PubMed  CAS  Google Scholar 

  16. Levy B, Sadoune L-O, Gelot A-M, et al. Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 2000; 28:114–119

    PubMed  CAS  Google Scholar 

  17. Marecaux G, Pinsky MR, Dupont E, et al. Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med 1996; 22:404–408

    Article  PubMed  CAS  Google Scholar 

  18. Schaefer CF, Lerner MR, Biber B. Dose-related reduction of intestinal cytochrome a,a 3 induced by endotoxin in rats. Circ Shock 1991; 33:17–25

    PubMed  CAS  Google Scholar 

  19. Stacpoole PW, Wright EC, Baumgartner TG, et al. Natural history and course of acquired lactic acidosis. Am J Med 1994; 97:47–54

    Article  PubMed  CAS  Google Scholar 

  20. Tuchschmidt J, Fried J, Swinney R, et al. Early hemodynamic correlates of survival in patients with septic shock. Crit Care Med 1989; 17:719–723

    PubMed  CAS  Google Scholar 

  21. Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 1996; 6:89–94

    PubMed  CAS  Google Scholar 

  22. Vary TC, Hazen SA, Maish G, et al. TNF binding protein prevents hyperlactatemia and inactivation of PDH complex in skeletal muscle during sepsis. J Surg Res 1998; 80:44–51

    Article  PubMed  CAS  Google Scholar 

  23. Vincent J-L, Dufaye P, Berré J, et al. Serial lactate determinations during circulatory shock. Crit Care Med 1983; 11:449–451

    PubMed  CAS  Google Scholar 

  24. Aduen J, Bernstein WK, Khastgir T, et al. The use and clinical importance of a substrate-specific electrode for rapid determination of blood lactate concentrations. JAMA 1994; 272:1678–1685

    Article  PubMed  CAS  Google Scholar 

  25. Kruse JA. Lactic acidosis. In: Carlson RW, Geheb MA (eds). Principles & practice of medical intensive care. WB Saunders, Philadelphia, 1993, pp 1231–1245

    Google Scholar 

  26. Kruse JA. The cellular basis of conventional and experimental pharmacotherapies for circulatory shock. Anaesth Pharmacol Rev 1994; 2:115–127

    CAS  Google Scholar 

  27. Kruse JA, Carlson RW. The use of vasoactive drugs to support oxygen transport in sepsis. Crit Care Med 1991; 19:144–146

    PubMed  CAS  Google Scholar 

  28. Guzman JA, Lacoma FJ, Najar A, et al. End-tidal PCO 2 as a noninvasive indicator of systemic oxygen supply-dependency during hemorrhagic shock and resuscitation. Shock 1997; 8:427–431

    Article  PubMed  CAS  Google Scholar 

  29. Guzman JA, Lacoma FJ, Kruse JA. Relationship between systemic oxygen supply dependency and gastric intramucosal PCO 2 during progressive hemonhage. J Trauma 1998; 44:696–700

    PubMed  CAS  Google Scholar 

  30. Shibutani K, Komatsu T, Kubal K, et al. Critical level of oxygen delivery in anesthetized man. Crit Care Med 1983; 11:640–643

    PubMed  CAS  Google Scholar 

  31. Nelson DP, Beyer C, Samsel RW, et al. Pathological supply dependence of O 2 uptake during bacteremia in dogs. J Appl Physiol 1987; 63:1487–1492

    PubMed  CAS  Google Scholar 

  32. Kruse JA. Blood lactate and oxygen transport. Intensive Care World 1987; 4:121–125

    Google Scholar 

  33. Sufrredini AF, Fromm RE, Parker MM, et al. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 1989; 321:280–287

    Google Scholar 

  34. Cain BS, Meldrum DR, Dinarello CA, et al. Tumor necrosis factor-□ and interleukin-l□ synergistically depress human myocardial function. Crit Care Med 1999; 27:1309–1318

    PubMed  CAS  Google Scholar 

  35. Archie JP Jr. Anatomic arterial-venous shunting in endotoxic and septic shock in dogs. Ann Surg 1977; 186:171–176

    PubMed  Google Scholar 

  36. Bollaert PE, Bauer P, Audibert G, et al. Effects of epinephrine on hemodynamics and oxygen metabolism in dopamine-resistant septic shock. Chest 1990; 98:949–953

    PubMed  CAS  Google Scholar 

  37. Guzman JA, Lacoma FJ, Kruse JA. Gastric and esophageal intramucosal PCO 2(PiCO 2) during endotoxemia: Assessment of raw PiCO 2 vs PCO 2 gradients as indicators of hypoperfusion in a canine model of septic shock. Chest 1998; 113:1078–1083

    PubMed  CAS  Google Scholar 

  38. Kruse JA. Lactic acidosis: Understanding pathogenesis and causes. J Crit Illness 1999; 14:456–466

    Google Scholar 

  39. Lucking SE, Williams TM, Chaten FC, et al. Dependence of oxygen consumption on oxygen delivery in children with hyperdynamic septic shock and low oxygen extraction. Crit Care Med 1990; 18:1316–1319

    PubMed  CAS  Google Scholar 

  40. Kruse JA. Lactic acidosis: Clinical significance, diagnosis, and treatment J Crit Illness 1999; 14:514–521

    Google Scholar 

  41. Hesselvik JF, Blombäck M, Brodin B, et al. Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome. Crit Care Med 1989; 17:724–733

    PubMed  CAS  Google Scholar 

  42. Astiz ME, DeGent GE, Lin RY, et al. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 1995; 23:265–271

    PubMed  CAS  Google Scholar 

  43. Kruse JA, Zaidi SAJ, Carlson RW. Significance of blood lactate in critically ill patients with liver disease. Am J Med 1987; 83:77–82

    Article  PubMed  CAS  Google Scholar 

  44. Levraut J, Ciebiera J-P, Chave S, et al. Mild hyperlactatemia in stable patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 1998; 157:1021–1026

    PubMed  CAS  Google Scholar 

  45. Lang CH, Cooney R, Vary TC. Central interleukin-1 partially mediates endotoxin-induced changes in glucose metabolism. Am J Physiol 1996; 271:E309–E316

    PubMed  CAS  Google Scholar 

  46. Haji-Michael PG, Ladriere L, Sener A, et al. Leukocyte glycolysis and lactate output in animal sepsis and ex vivo human blood. Metabol Clin Exp 1999; 48:779–785

    CAS  Google Scholar 

  47. Vary TC, Drnevich D, Jurasinski C, et al. Mechanisms regulating skele-tal muscle glucose metabolism in sepsis. Shock 1995; 3:403–410

    PubMed  CAS  Google Scholar 

  48. Guzman JA, Kruse JA. Splanchnic hemodynamics and gut mucosal-arterial PCO 2 gradient during systemic hypocapnia. J Appl Physiol 1999; 87:1102–1106

    PubMed  CAS  Google Scholar 

  49. Vary TC, Handle PJ. The effect of ischaemia on the activity of pyruvate dehydrogenase complex in rat heart. J Mol Cell Cardiol 1984; 16:723–733

    PubMed  CAS  Google Scholar 

  50. Guo Y, Wu Y, Chen W, et al. Endotoxic damage to the stria vascularis:the pathogenesis of sensorineural hearing loss secondary to otitis media. J Laryngol Otol 1994; 108:310–313

    PubMed  CAS  Google Scholar 

  51. Szabó C, Day BJ, Salzman AL. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett 1996; 381:82–86

    PubMed  Google Scholar 

  52. Bolanos JP, Peuchen S, Heales SJ, et al. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 1994; 63:910–916

    PubMed  CAS  Google Scholar 

  53. Lam C, Tyml K, Martin C, et al. Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 1994; 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kruse, J.A. (2002). Blood Lactate Concentrations in Sepsis. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics