Skip to main content

Cytopathic Hypoxia

  • Chapter
  • 295 Accesses

Conclusion

Several lines of evidence support the notion that cellular energetics are deranged in sepsis, not (just) on the basis of inadequate tissue perfusion, but rather because of impaired mitochondrial respiration and/or coupling. These findings suggest the possibility that organ dysfunction in sepsis may occur on the basis of cytopathic hypoxia. If this concept is correct, then the therapeutic implications are enormous. Efforts to improve outcome in septic patients by monitoring and manipulating cardiac output, systemic oxygen delivery, and regional blood flow would seem unlikely to have a major impact on outcome. Instead, our focus should be on developing pharmacological strategies to restore normal mitochondrial function and cellular energetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fink MP. Cytopathic hypoxia in sepsis. Acta Anaesthesiol Scand 1997 (Suppl 100); 41:87–95

    Google Scholar 

  2. Vallet B, Lund N, Curtis SE, et al. Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 1994; 76:793–800

    PubMed  CAS  Google Scholar 

  3. Hasibeder W, Germann R, Wolf HJ, et al. Effects of short-term endotoxemia and dopamine on mucosal oxygenation in porcine jejunum. Am J Physiol 1996; 270:G667–G675

    PubMed  CAS  Google Scholar 

  4. Noldge-Schomberg GF, Priebe HJ, Armbruster K, et al. Different effects of early endotoxemia on hepatic and small intestinal oxygenation in pigs. Intensive Care Med 1996; 22:795–804

    Google Scholar 

  5. Sair M, Etherington PJ, Curzen NP, et al. Tissue oxygenation and perfusion in endotoxemia. Am J Physiol 1996; 271:H1620–H1625

    PubMed  CAS  Google Scholar 

  6. Astiz M, Rackow EC, Weil MH, et al. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 1988; 26:311–320

    PubMed  CAS  Google Scholar 

  7. Aiming PB, Sair M, Winlove CP, et al. Abnormal tissue oxygenation and cardio vascular changes in endotoxemia. Am J Resp Crit Care Med 1999; 159:1710–1715

    Google Scholar 

  8. Hotchkiss RS, Rust RS, Dence CS, et al. Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F]fluoroisonidazole. Am J Physiol 1991; 261:R965–R972

    PubMed  CAS  Google Scholar 

  9. VanderMeer TJ, Wang H, Fink MP. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 1995; 23:1217–1226

    Google Scholar 

  10. Rosser DM, Stidwill RP, Jacobson D, et al. Oxygen tension in the bladder epithelium rises in both high and low cardiac output endotoxemic sepsis. J Appl Physiol 1995; 79:1878–1882

    PubMed  CAS  Google Scholar 

  11. Boekstegers P, Weidenhofer S, Kapsner T, et al. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 1994; 22:640–650

    PubMed  CAS  Google Scholar 

  12. Simonson SG, Welty-Wolf K, Huang Y-CT, et al. Altered mitochondrial redox responses in Gram negative septic shock in primates. Circ Shock 1994; 43:34–43

    PubMed  CAS  Google Scholar 

  13. Bankey PE, Hill S, Geldon D. Sequential insult enhances liver macrophage-signaled hepatocyte dysfunction. J Surg Res 1994; 57:185–191

    Article  PubMed  CAS  Google Scholar 

  14. Zingarelli B, Day BJ, Crapo JD, et al. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol 1997; 120:259–267

    PubMed  CAS  Google Scholar 

  15. Unno N, Wang H, Menconi MJ, et al. Inhibition of inducible nitric oxide synthase ameliorates lipopolysaccharide-induced gut mucosal barrier dysfunction in rats. Gastroenterology 1997; 113:1246–1257

    Article  PubMed  CAS  Google Scholar 

  16. Gross SS, Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 1992; 267:25722–25729

    PubMed  CAS  Google Scholar 

  17. Premarante S, Masuda E, Nishida S, et al. Does intravenous glutamine prevent bacterial translocation in hemorrhagic shock? Shock 1994; 2:262–266

    Google Scholar 

  18. King CJ, Tytgat SHAJ, Delude RL, Fink MP. Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 1999; 27:2518–2524

    PubMed  CAS  Google Scholar 

  19. Vary TC, Siegel JH, Nakatani T, et al. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 1986; 250:E634–E640

    PubMed  CAS  Google Scholar 

  20. Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 1996; 6:89–94

    PubMed  CAS  Google Scholar 

  21. Vary TC, Hazen S. Sepsis alters pyruvate dehydrogenase kinase activity in skeletal muscle. Mol Cell Biochem 1999; 198:113–118

    Article  PubMed  CAS  Google Scholar 

  22. Vary TC. Increased pyruvate dehydrogenase kinase activity in response to sepsis. Am J Physiol 1991; 250:E669–E674

    Google Scholar 

  23. Fink MP, Payen D. The role of nitric oxide in sepsis and ARDS: synopsis of a roundtable conference held in Brussels on 18–20 March 1995. Intensive Care Med 1996; 22:158–165

    PubMed  CAS  Google Scholar 

  24. Borutaité V, Brown GC. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J 1996; 315:295–299

    PubMed  Google Scholar 

  25. Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 1996; 328:309–316

    Article  PubMed  CAS  Google Scholar 

  26. Nishikawa M, Sato EF, Kuroki T, Inoue M. Role of glutathione and nitric oxide in the energy metabolism of rat liver mitochondria. FEBS Lett 1997; 415:341–345

    Article  PubMed  CAS  Google Scholar 

  27. Torres J, Darley-Usmer V, Wilson MT. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J 1995; 312:169–173

    PubMed  CAS  Google Scholar 

  28. Giuffre A, Sarti P, D’Itri E, et al. On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J Biol Chem 2000; 271:33404–33408

    Google Scholar 

  29. Poderoso JJ, Carreras MC, Lisdero C, et al. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996; 328:85–92

    Article  PubMed  CAS  Google Scholar 

  30. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418:291–296

    Article  PubMed  CAS  Google Scholar 

  31. Ghafourifar P, Schenk U, Klein SD, et al. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 1999; 27:31185–31188

    Google Scholar 

  32. Packer MA, Porteous CM, Murphy MP. Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite. Biochem Mol Biol Int 1996;40:527–534

    PubMed  CAS  Google Scholar 

  33. Radi R, Rodriguez M, Castro L, et al. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 1994; 308:96–102

    Article  PubMed  Google Scholar 

  34. Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not its precursor, nitric oxide. J Biol Chem 1994; 269:29409–29415

    PubMed  CAS  Google Scholar 

  35. Boczkowski I, Lisdero C, Lanone S, et al. Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J 1999; 13:1637–1646

    PubMed  CAS  Google Scholar 

  36. Unno N, Menconi MJ, Smith M, et al. Acidic conditions ameliorate both ATP depletion and the development of hyperpermeability in cultured Caco-2 enterocytic monolayers subjected to metabolic inhibition. Surgery 1997; 121:668–680

    Article  PubMed  CAS  Google Scholar 

  37. Durkacz BW, Omidiji O, Gray DA, et al. (ADP-ribose)n participates in DNA excision repair. Nature 1980; 283:593–596

    Article  PubMed  CAS  Google Scholar 

  38. Saitoh MS, Poirier GG, Lindahl T. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 1994; 33:7099–7106

    Google Scholar 

  39. Lautier D, Lageux J, Thibodeau J, et al. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem 1993; 122:171–193

    Article  PubMed  CAS  Google Scholar 

  40. Szabó C, Zingarelli B, Salzman AL. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ Res 1996; 78:1051–1063

    PubMed  Google Scholar 

  41. Szabo C, Cuzzocrea S, Zingarelli B, et al. Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 1997; 100:723–735

    Article  PubMed  CAS  Google Scholar 

  42. Pulido EJ, Shames BD, Selzman CH, et al. Inhibition of PARS attenuates endotoxin-induced dysfunction of pulmonary vasorelaxation. Am J Physiol 1999; 277:L769–L776

    PubMed  CAS  Google Scholar 

  43. Szabo A, Salzman AL, Szabo C. Poly (ADP-ribose) synthetase activation mediates pulmonary microvascular and intestinal mucosal dysfunction in endotoxin shock. Life Sci 1998; 63:2133–2139

    Article  PubMed  CAS  Google Scholar 

  44. Kuhnle S, Nicotera P, Wendel A, et al. Prevention of endotoxin-induced lethality, but not of liver apoptosis in poly(ADP-ribose) polymerase-deficient mice. Biochem Biophys Res Comm 1999; 263:433–438

    PubMed  CAS  Google Scholar 

  45. Oliver FJ, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999; 18:4446–54

    Article  PubMed  CAS  Google Scholar 

  46. Motterlini R, Kerger H, Green CJ, et al. Depression of endothelial and smooth muscle cell oxygen consumption by endotoxin. Am J Physiol 1998; 275:H776–H782

    PubMed  CAS  Google Scholar 

  47. Stuart JA, Brindle KM, Harper JA, et al. Mitochondrial proton leak and the uncoupling proteins. J Bioenerg Biomembr 1999; 31:517–525

    Article  PubMed  CAS  Google Scholar 

  48. Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000; 345:161–179

    Article  PubMed  CAS  Google Scholar 

  49. Zoratti M, Szabo I. The mitochondrial permeability transition. Bioch Biophys Acta 1995; 1241:139–176

    Google Scholar 

  50. Connern CP, Halestrap AP. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 1994; 302:321–324

    PubMed  CAS  Google Scholar 

  51. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995; 307:93–98

    PubMed  CAS  Google Scholar 

  52. Nieminen AL, Saylor AK, Tesfai SA, et al. Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 1995; 307:99–106

    PubMed  CAS  Google Scholar 

  53. Bradham CA, Qian T, Streetz K, et al. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biochem 1998; 18:6353–6364

    CAS  Google Scholar 

  54. Greer GG, Milazzo FH. Pseudomonas aeruginosa lipopolysaccharide: an uncouple of mitochondrial oxidative phosphorylation. Can J Microbiol 1975; 21:877–883

    Article  PubMed  CAS  Google Scholar 

  55. Geller ER, Jankauskas S, Kirkpatrick J. Mitochondrial death in sepsis: a failed concept. J Surg Res 1986; 40:514–517

    Article  PubMed  CAS  Google Scholar 

  56. Fry DE, Silva BB, Rink RD, et al. Hepatic cellular hypoxia in murine peritonitis. Surgery 1979; 85:652–661

    PubMed  CAS  Google Scholar 

  57. Mela L, Bacalco LV, Jr., Miller LD. Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 1971; 220:571–577

    PubMed  CAS  Google Scholar 

  58. Tavakoli H, Mela L. Alterations of mitochondrial metabolism and protein concentrations in subacute septicemia. Infect Immun 1982; 38:536–541

    PubMed  CAS  Google Scholar 

  59. Stadler J, Billiar TR, Curran RD, et al. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration in rat hepatocytes. Am J Physiol 1991; 260:C910–C916

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fink, M.P. (2002). Cytopathic Hypoxia. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics