Skip to main content

Microvascular Alterations in Sepsis

  • Chapter
The Sepsis Text

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ito S, Carretero OA, Abe K. Role of nitric oxide in the control of glomerular microcirculation. Clin Exp Pharm Physiol 1997; 24:578–581

    CAS  Google Scholar 

  2. Duling BR, Berne RM. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 1970; 27:669–678

    PubMed  CAS  Google Scholar 

  3. Ellsworth ML, Ellis CG, Popel AS, Pittman RN. Role of microvessels in oxygen supply to tissue. News Physiol Sci 1994; 9:119–123

    Google Scholar 

  4. Ellsworth ML, Pittman RN. Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 1990; 258:H1240–H1243

    PubMed  CAS  Google Scholar 

  5. Lush CW, Kvietys PR. Microvascular dysfunction in sepsis. Microcirculation 2000; 7:83–101

    Article  PubMed  CAS  Google Scholar 

  6. Pries AR, Ley K, Claassen M, Gaethgens P. Red cell distribution at microvascular bifurcations. Microvasc Res 1989; 38:81–101

    Article  PubMed  CAS  Google Scholar 

  7. Federspiel WJ, Popel AS. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc Res 1986; 32:164–189

    Article  PubMed  CAS  Google Scholar 

  8. Varela FE, Popel AS. Effect of intracapillary resistance to oxygen transport on the diffusional shunting between capillaries. J Biomed Eng 1998; 10:400–405

    Google Scholar 

  9. Pohl U, De Wit C, Gloe T. Large arterioles in the control of blood flow: role of endothelium-dependent dilatation. Acta Physiol Scand 2000; 168:505–510

    Article  PubMed  CAS  Google Scholar 

  10. Duling BR, Hogan RD, Langille BL, Lelkes P, Segal SS, Vatner SF, Weigelt H, Young MA. Vasomotor control: functional hyperemia and beyond. Fed Proc 1987; 46:251–263

    PubMed  CAS  Google Scholar 

  11. Liao JC, Kuo L. Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am J Physiol 1997; 272:H1571–H1581

    PubMed  CAS  Google Scholar 

  12. Rivers RJ. Remote effects of pressure changes in arterioles. Am J Physiol 1995; 268:H1379–H1382

    PubMed  CAS  Google Scholar 

  13. Sun D, Huang A, Koller A, Kaley G. Flow-dependent dilation and myogenic constrictionn interact to establish the resistance of skeletal muscle arterioles. Microcirculation 1995; 2:289–295

    PubMed  CAS  Google Scholar 

  14. Ngai AC, Winn HR. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res 1995; 77:832–840

    PubMed  CAS  Google Scholar 

  15. Falcone JC. Endothelial cell calcium and vascular control. Med Sci Sports Exerc 1995; 27:1165–1169

    PubMed  CAS  Google Scholar 

  16. Schubert R, Mulvany MJ. The myogenic response: established facts and attractive hypotheses. Clin Sci 1999; 96:313–326

    Article  PubMed  CAS  Google Scholar 

  17. Hill MA, Zou H, Davis JM, Potocnik Sj, Price S. Transient increases in diameter and [Ca(2+)](i) are not obligatory for myogenic constriction. Am J Physiol 2000; 278:H354–H352

    Google Scholar 

  18. Falcone JC, Meininger GA. Endothelin mediates a component of the enhanced myogenic responsiveness of arterioles from hypertensive rats. Microcirculation 1999; 6:305–313

    Article  PubMed  CAS  Google Scholar 

  19. Nagi MM, Ward ME. Modulation of myogenic responsiveness by CO2 in rat diaphragmatic arterioles: role of the endothelium. Am J Physiol 1997; 272:H1419–H1425

    PubMed  CAS  Google Scholar 

  20. Welsh DG, Segal SS. Coactivation of resistance vessels and muscle fibers with acetylcholine release from motor nerves. Am J Physiol 1998; 273:H156–H163

    Google Scholar 

  21. Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, Lange AR, Roman RJ. Identification of a putative microvascular oxygen sensor. Circ Res 1996; 79:54–61

    PubMed  CAS  Google Scholar 

  22. Jackson WF. Arteriolar oxyge reactivity: where is the sensor? Am J Physiol 1987; 253:H1120–H1126

    PubMed  CAS  Google Scholar 

  23. Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 1998; 391:169–173

    PubMed  CAS  Google Scholar 

  24. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997; 276:2034–2037

    Article  PubMed  CAS  Google Scholar 

  25. Ellsworth ML, Forrester CG, Ellis CG, Dietrich HH. The erythrocyte as a regulator of vascular tone. Am J Physiol 1995; 269:H2155–H2161

    PubMed  CAS  Google Scholar 

  26. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 1996; 61:190–196

    Article  PubMed  CAS  Google Scholar 

  27. Lam C, Tyml K, Martin C, Sibbald W. Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 1994; 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

  28. Schumacker PT, Samsel RW. Oxygen delivery and uptake by peripheral tissues: physiology and pathophysiology. Crit Care Clin 1989; 5:255–269

    PubMed  CAS  Google Scholar 

  29. Astiz ME, DeGent GE, Lin RY, Rackow EC. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 1995; 23:265–271

    PubMed  CAS  Google Scholar 

  30. Kirschenbaum LA, Aziz M, Astiz ME, Saha DC, Rackow EC. Influence of rheologic changes and platelet-neutrophil interactions on cell filtration in sepsis. Am J Respir Crit Care Med 2000; 161:1602–1607

    PubMed  CAS  Google Scholar 

  31. Linderkamp O, Ruef P, Brenner B, Gulbins E, Lang F. Passive deformability of mature, immature, and active neutrophils in healthy and septicemic neonates. Pediatr Res 1998; 44:946–950

    PubMed  CAS  Google Scholar 

  32. Yodice PC, Astiz ME, Kurian BM, Lin RY, Rackow EC. Neutrophil rheologic changes in septic shock. Am J Respir Crit Care Med 1997; 155:38–42

    PubMed  CAS  Google Scholar 

  33. Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am J Respir Crit Care Med 1998; 157:421–427

    PubMed  CAS  Google Scholar 

  34. Langenfeld JE, Machiedo GW, Lyons M, Rush BF, Dikdan G, Lysz TW. Correlation between red blood cell deformability and changes in hemodynamic function. Surgery 1994; 116:859–867

    PubMed  CAS  Google Scholar 

  35. Machiedo GW, Powell RJ, Rush BF, Swislocki NI, Dikdan G. The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-systems organ failure. Arch Surg 1989; 124:1386–1389

    PubMed  CAS  Google Scholar 

  36. ten Cate H. Pathophysiology of disseminated intravascular coagulation in sepsis. Crit Care Med 2000; 28:S9–S11

    PubMed  Google Scholar 

  37. Goddard CM, Poon BY, Klut ME, Wiggs BR, Van Eeden SF, Hogg JC, Walley KR. Leukocyte activation does not mediate myocardial leukocyte retention during endotoxemia in rabbits. Am J Physiol 1998; 275:H1548–H1557

    PubMed  CAS  Google Scholar 

  38. Schmidt H, Schmidt W, Muller T, Bohrer B, Gebhard MM, Martin E. N-acetylcysteine attenuates endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Crit Care Med 1997; 25:858–863

    PubMed  CAS  Google Scholar 

  39. Schmidt W, Stenzel K, Gebhard MM, Martin E. C1-esterase inhibitor and its effects on endotoxin-induced leokocyte adherence and plasma extravasation in postcapillary venules. Surgery 1999; 125:280–287

    PubMed  CAS  Google Scholar 

  40. Klabunde RE, Calvello C. Inhibition of endotoxin-induced microvascular leakage by a platelet-activating factor antagonist and 5-lipoxygenase inhibitor. Shock 1995; 4:368–372

    Article  PubMed  CAS  Google Scholar 

  41. Laniyonu AA, Coston AF, Klabunde RE. Endotoxin-induced mirovascular leakage is prevented by a PAF antagonist and NO synthase inhibitor. Shock 1997; 7:49–54

    PubMed  CAS  Google Scholar 

  42. Schmidt H, Schmidt W, Muller T, Bohrer B, Bach A, Gebhard MM, Martin E. Effect of the 21-aminosteroid tirilazad mesylate on leukocyte adhesion and macromolecular leakage during endotoxemia. Surgery 1997; 121:328–334

    Article  PubMed  CAS  Google Scholar 

  43. Eppihimer MJ, Wolitzky B, Anderson DC, Labow MA, Granger DN. Heterogeneity of expression of E-and P-selectins in vivo. Circ Res 1996; 79:560–569

    PubMed  CAS  Google Scholar 

  44. Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P. Cytokine-regulated expression of E-selectin, intracellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 1996; 156:2558–2565

    PubMed  CAS  Google Scholar 

  45. Barroso-Arranda J, Schmid-Schonbien G, Sweifach BW, Mathison JC. Polymorphonuclear neutrophil contribution to induced tolerance to bacterial lipopolysaccharide. Circ Res 1991; 69:1196–1206

    Google Scholar 

  46. Goddard CM, Allard MF, Hogg JC, Walley KR. Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 1996; 270:H1446–H1452

    PubMed  CAS  Google Scholar 

  47. Neviere RR, Pitt-Hyde ML, Piper RD, Sibbald WJ, Potter RF. Microvascular perfusion deficits are not a prerequisite for mucosal injury in septic rats. Am J Physiol 1999; 276:G933–G940

    PubMed  CAS  Google Scholar 

  48. Davenpeck KL, Zagorski J, Schleimer RP, Bochner BS. Lipopolysaccharide-induced leukocyte rolling and adhesion in the rat mesenteric microcirculation: regulation by glucocorticoids and role of cytokines. J Immunol 1998; 161:6861–6870

    PubMed  CAS  Google Scholar 

  49. Hersch M, Madorin WS, Sibbald WJ, Martin CM. Selective gut microcirculatory control (SGMC) in septic rats: a novel approach with a locally applied vasoactive drug. Shock 1998; 10:292–297

    PubMed  CAS  Google Scholar 

  50. Makita H, Nishimura N, Miyamoto K, Nakano T, Tanino Y, Hirokawa J, Nishihara J, Kawakamy Y. Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation. Am J Respir Crit Care Med 1998; 158:573–579

    PubMed  CAS  Google Scholar 

  51. Kvietys PR, Granger DN. The vascular endothelium in GI inflammation. In: Wallace J, (ed) Immunopharmacology of the gastrointestinal system. Academic Press Ltd., London, 1993 pp:69–103

    Google Scholar 

  52. Panes J, Granger DN. Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 1998; 114:1066–1090

    Article  PubMed  CAS  Google Scholar 

  53. Sundrani R, Easington CR, Mattoo A, Parillo JE, Hollenberg SM. Nitric oxide synthase inhibition increases venular leukocyte rolling and adhesion in septic rats. Crit Care Med 2000; 28:2898–2903

    PubMed  CAS  Google Scholar 

  54. Hogg JC, Doerschuk CM. Leukocyte traffic in the lung. Ann Rev Physiol 1995; 57:97–114

    Article  CAS  Google Scholar 

  55. Bums AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, Simon SI, Entman ML, Smith CW. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol 1997; 159:2893–2903

    Google Scholar 

  56. Cepinskas G, Sandig M, Kvietys PR. PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front J Cell Sci 1999; 112:1937–1945

    PubMed  CAS  Google Scholar 

  57. Granger HJ, Yuan Y, Zawieja DC. Ultrastructural basis of leukocyte migration through the microvascular membrane. In: Granger DN, Schmid-Schonbein GW (eds) Physiology and pathophysiology of leukocyte adhesion. Oxford University Press, Oxford, 1995, pp:185–195

    Google Scholar 

  58. Kishimoto TK, Anderson DC. The role of integrins in inflammation. In: Gallin JL, Goldstein IM, Snyderman R, eds. Inflammation. Basic principles and clinical correlates. Raven Press Ltd., New York, 1992 pp:353–495

    Google Scholar 

  59. Furie MB, Naprstek BL, Silverstein SC. Migration of neutrophils across monolayers of cultured microvascular endothelial cells. J Cell Sci 1987; 88:161–175

    PubMed  CAS  Google Scholar 

  60. Huber AR, Weiss SJ. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest 1995; 83:1122–1136

    Google Scholar 

  61. Cepinskas G, Noseworthy R, Kvietys PR. Transendothelial neutrophil migration. Role of neutrophil-derived proteases and relationship to transendothelial protein movement. Circ Res 1997; 81:618–626

    PubMed  CAS  Google Scholar 

  62. Thomas JR, Harlan JM, Rice JL, Winn RK. Role of leukocyte CD11/CD18 complex in endotoxic and septic shock in rabbits. J Appl Physiol 1992; 73:1510–1516

    PubMed  CAS  Google Scholar 

  63. Bandel JW, Goldberg RN, Suguihara C, Nagoshi R, Martinez O, Rothlein R, Ruiz P, Bancalari E. Effects of anti-CD18 monoclonal antibody, R17.7, on the cardiopulmonary manifestations of group B streptococcal sepsis in piglets. Biol Neonate 2000; 78:121–128

    Article  PubMed  CAS  Google Scholar 

  64. Walsh CJ, Carey PD, Cook DJ, Bechard DE, Fowler AA, Sugerman HJ. Anti-CD18 antibody attenuates neutropenia and alveolar capillary-membrane injury during gram-negative sepsis. Surgery 1991; 110:205–211

    PubMed  CAS  Google Scholar 

  65. Xu N, Rahman A, Mishall RD, Tiruppathi C, Malik AB. Beta(2)-integrin blockade driven by E-selectin promotor prevents neutrophil sequestration and lung injury in mice. Circ Res 2000; 87:254–260

    PubMed  CAS  Google Scholar 

  66. Jaeschke H, Farhood A, Smith CW. Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am J Physiol 1991; 261:G1051–G1056

    PubMed  CAS  Google Scholar 

  67. Xu H, Gonzalo JA, St.Pierre Y, et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 1994; 180:95–109

    Article  PubMed  CAS  Google Scholar 

  68. Lentsch AB, Ward PA. Regulation of inflammatory vascular damage. J Pathol 2000; 190:343–348

    Article  PubMed  CAS  Google Scholar 

  69. Kvietys PR, Granger DN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am J Physiol 1997; 273:G1189–G1199

    PubMed  CAS  Google Scholar 

  70. Yoshida N, Cepinskas G, Granger DN, Anderson DC, Wolf RE, Kvietys PR. Aspirin-induced, neutrophil-mediated injury to vascular endothelium. Inflammation 1995; 19:297–312

    Article  PubMed  CAS  Google Scholar 

  71. Lehr HA, Fernando B, Kirkpatrick C, James J. Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol 2000; 190:373–386

    Article  PubMed  CAS  Google Scholar 

  72. Gerard C, Bruyns C, Merchant A, et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 1993; 177:547–550

    Article  PubMed  CAS  Google Scholar 

  73. Van der Poll T, Jansen PM, Montegut WJ, et al. Effects of IL-10 on systemic inflammatory responses during sublethal primate endotoxemia. J Immunol 1997; 158:1971–1975

    PubMed  Google Scholar 

  74. Kanwar S, Kubes P. Nitric oxide is an antiadhesive molecule for leukocytes. New Horiz 1995; 3:93–104

    PubMed  CAS  Google Scholar 

  75. Nishida J, McCuskey RS, McDonnell D, Fox ES. Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 1994; 267:G1135–G1141

    PubMed  CAS  Google Scholar 

  76. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88:4651–4655

    PubMed  CAS  Google Scholar 

  77. Bloomfield GL, Holloway S, Ridings PC, et al. Pretreatment with inhaled nitric oxide inhibits neutrophil migration and oxidative activity resulting in attenuated sepsis-induced acute lung injury. Crit Care Med 1997; 25:584–593

    PubMed  CAS  Google Scholar 

  78. Spieker M, Darius H, Kaboth K, Hubner F, Liao JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 1998; 63:732–739

    Google Scholar 

  79. Spieker M, Peng HB, Liao JK. Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of Ikappa Balpha. J Biol Chem 1997; 272:30969–30974

    Google Scholar 

  80. Zingarelli B, Salzman AL, Szabo C. Genetic disruption of poly (ADP ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myoardial ischemia/reperfusion injury. Circ Res 1998; 83:85–94

    PubMed  CAS  Google Scholar 

  81. Zingarelli B, Szabo C, Salzman AL. Blockade of Poly (ADP-ribose) synthetase inhibits neutrophil recruitment, oxidant generation, and mucosal injury in murine colitis. Gastroenterology 1999; 116:335–345

    Article  PubMed  CAS  Google Scholar 

  82. Neviere RR, Cepinskas G, Madorin WS, et al. LPS pretreatment ameliorates peritonitis-induced myocardial inflammation and dysfunction: role of myocytes. Am J Physiol 1999; 277:H885–H892

    PubMed  CAS  Google Scholar 

  83. Bone RC. Sepsis and its complications: The clinical problem. Crit Care Med 1994; 22:S8–S11

    PubMed  CAS  Google Scholar 

  84. Kollef MH, Schuster DP. The acute respiratory distress syndrome. N Engl J Med 1995; 332:27–37

    Article  PubMed  CAS  Google Scholar 

  85. Hersch M, Gnidec AA, Bersten AD, Troster M, Rutledge FS, Sibbald WJ. Histologic and ultrastructural changes in nonpulmonary organs during early hyperdynamic sepsis. Surgery 1990; 107:397–410

    PubMed  CAS  Google Scholar 

  86. Munt B, Jue J, Gin K, Fenwick J, Tweeddale M. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 1998; 26:1829–1833

    PubMed  CAS  Google Scholar 

  87. Polaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 1997; 23:553–560

    Google Scholar 

  88. Nelson DP, Samsel RW, Wood LDH, Schumacker PT. Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 1988; 64:2410–2419

    PubMed  CAS  Google Scholar 

  89. Sielenkämper AW, Yu P, Eichelbronner O, MacDonald T, Martin CM, Chin-Yee IH, Sibbald WJ. Diaspirin crosslinked hemoglobin and norepinephrine prevent the sepsis-induced increase in critical O2 delivery. Am J Physiol 2000; 279:H1922–H1930

    Google Scholar 

  90. Hanique G, Dugernier T, Laterre PF, Dougnac A, Roeseler J, Reynaert MS. Significance of pathologic oxygen supply dependency in critically ill patients: comparison between measured and calculated methods. Intensive Care Med 1994; 20:12–18

    PubMed  CAS  Google Scholar 

  91. Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunnungham KF, Russell JA, Walley KR. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 1993; 270:1724–1730

    Article  PubMed  CAS  Google Scholar 

  92. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. The coronary circulation in human septic shock. Circulation 1986; 73:637–644

    PubMed  CAS  Google Scholar 

  93. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 1999; 27:1369–1377

    PubMed  CAS  Google Scholar 

  94. Sielenkämper AW, Sibbald WJ. Pathophysiology of hypotension. In: Webb A, Shapiro MJ, Singer M, Suter PM (eds). Oxford Textbook of Critical Care. Oxford University Press, Oxford, 1999 pp:215–219

    Google Scholar 

  95. Shibutani K, Komatsu T, Kubal K, Sanchala V, Kumar V, Bizarri DV. Critical level of oxygen delivery in anesthetized man. Crit Care Med 1983; 11:640–643

    PubMed  CAS  Google Scholar 

  96. Komatsu T, Shibutani K, Okamoto K, Kumar V, Kubal K, Sanchala V, Lees DE. Critical level of oxygen delivery after cardiopulmonary bypass. Crit Care Med 1987; 15:194–197

    PubMed  CAS  Google Scholar 

  97. Tuchschmidt J, Fried J, Swinney R, Sharma OP. Early hemodynamic correlates of survival in patients with septic shock. Crit Care Med 1989; 17:719–723

    PubMed  CAS  Google Scholar 

  98. Mohsenifar Z, Goldbach P, Tashkin DP, Campisi DJ. Relationship between O2 delivery and O2 consumption in the adult respiratory distress syndrome. Chest 1983; 84:267–271

    PubMed  CAS  Google Scholar 

  99. Meduri G, Headley S, Kohler G, Stentz F, Tolley E, Umberger R, Leeper K. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 1995; 107:1062–1073

    PubMed  CAS  Google Scholar 

  100. Schutte H, Lohmeyer J, Rosseau S, et al. Bronchoalveolar and systemic cytokine profiles in patients with ARDs, severe pneumonia and cardiogenic pulmonary edema. Eur Respir J 2000; 9:1858–1867

    Google Scholar 

  101. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149:818–824

    PubMed  CAS  Google Scholar 

  102. Fischer SR, Deyo DJ, Bone HG, McGuire R, Traber LD, Traber DL. Nitric oxide synthase inhibition restores hypoxic pulmonary vasoconstriction in sepsis. Am J Respir Crit Care Med 1997; 156:833–839

    PubMed  CAS  Google Scholar 

  103. Temmesfeld-Wollbruck B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F. Abnormalities of gastric mucosal oxygenation in septic shock: partial responsiveness to dopexamine. Am J Respir Crit Care Med 1998; 157:1586–1592

    PubMed  CAS  Google Scholar 

  104. Heyman SN, Fuchs S, Brezis M. The role of medullary ischemia in acute renal failure. New Horizons 1995; 597–607

    Google Scholar 

  105. Papadopoulos MC, Davies C, Moss RF, Tighe D, Bennett ED. Pathophysiology of septic encephalopathy: A review. Crit Care Med 2000; 28:3019–3024

    PubMed  CAS  Google Scholar 

  106. Perry VH, Andersson PB, Gordon S. Macrophages and inflammation in the central nervous system. Trends Neurosci 1993; 16:268–273

    Article  PubMed  CAS  Google Scholar 

  107. ACCP/SCCM Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101:1644–1655

    Google Scholar 

  108. Muller B, Becker KL, Schachinger H, Rickenbacher PR, Zimmerli W, Ritz R. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med 2000; 977–983

    Google Scholar 

  109. Herrmann W, Ecker D, Quast S, Klieden M, Rose S, Marzi I. Comparison of procalcitonon, sCD14 and interleukin-6 values in septic patients. Clin Chem Lab Med 2000; 38:41–46

    Article  PubMed  CAS  Google Scholar 

  110. Hatherill M, Tibby SM, Turner C, Ratnavel N, Murdoch LA. Procalcitonin and cytokine levels: relationship to organ failure and mortality in pediatric septic shock. Crit Care Med 2000; 28:2591–2594

    PubMed  CAS  Google Scholar 

  111. Arnalich F, Garcia-Palomero E, Lopez J, Jimenez M, Madero R, Renart J, Vazquez JJ, Montiel C. Predictive value of nuclear factor kappa B activity and plasma cytokine levels in patients with sepsis. Infect Immun 2000; 68:1942–1954

    Article  PubMed  CAS  Google Scholar 

  112. Vincent JL. The available clinical tools — oxygen-derived variables, lactate, and pHi. In: Sibbald WJ, Messmer K, Fink MP (eds) Tissue Oxygenation in Acute Medicine. Springer, Heidelberg, 1998 pp:193–203

    Google Scholar 

  113. Curtis SE, Cain SM. Regional and systemic oxygen delivery/uptake relations and lactate flux in hyperdynamic endotoxin treated dogs. Am Rev Respir Dis 1992; 145:348–354

    PubMed  CAS  Google Scholar 

  114. Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 1998; 157:1021–1026

    PubMed  CAS  Google Scholar 

  115. Neviere RR, Sibbald WJ. Development of myocardial tolerance to ischemia/reperfusion and septic injury. In: Vincent JL, ed. Yearbook of intensive care and emergency medicine. Springer, Heidelberg, 1998, pp:125–132

    Google Scholar 

  116. Glauser MP. Pathophysiologic basis of sepsis: Considerations for future strategies of intervention. Crit Care Med 2000; 28:S4–S8

    PubMed  CAS  Google Scholar 

  117. Treggiari-Venzi MM, Suter PM, Romand JA. Effects of catecholamine therapy on regional perfusion in septic shock. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Heidelberg, 2000 pp:658–670

    Google Scholar 

  118. Kilbourn RG, Szabo C, Traber DL. Beneficial versus detrimental effects of nitric oxide synthase inhibitors in circulatory shock: Lessons learned from experimental and clinical studies. Shock 1997; 7:235–246

    PubMed  CAS  Google Scholar 

  119. Sielenkämper AW, Eichelbrönner O, Martin CM, Madorin SW, Chin-Yee IH, Sibbald WJ. Diaspirin crosslinked hemoglobin improves mucosal perfusion in ileum of septic rats. Crit Care Med 2000; 27:782–787

    Google Scholar 

  120. Sielenkämper AW, Chin-Yee IH, Martin CM, Sibbald WJ. Diaspirin crosslinked hemoglobin improves systemic oxygen uptake in oxygen supply-dependent septic rats. Am J Respir Crit Care Med 1997; 156:1066–1072

    PubMed  Google Scholar 

  121. Creteur J, Zhang H, De Backer D, Sun Q, Vincent JL. Diaspirin cross-linked hemoglobin improves oxygen extraction capabilities in endotoxic shock. J Appl Physiol 2000; 89:1437–1444

    PubMed  CAS  Google Scholar 

  122. Zhang H, Smail N, Cabral A, Rogiers P, Vencent JL. Effects of norepinephrine on regional blood flow and oxygen extraction capabilities during endotoxic shock. Am J Respir Crit Care Med 1997; 155:1965–1971

    PubMed  CAS  Google Scholar 

  123. Zhang H, Rogiers P, Smail N, Cabral A, Presier JC, Peny MO, Vincent JL. Effects of nitric oxide on blood flow distribution and O2 extraction capabilities during endotoxic shock. J Appl Physiol 1997; 83:1164–1173

    PubMed  CAS  Google Scholar 

  124. Sielenkämper AW, Eicker K, Van Aken H. Thoracic epidural anesthesia increases mucosal perfusion in ileum of rats. Anesthesiology 2000; 93:844–851

    PubMed  Google Scholar 

  125. Thijs LG. Coagulation inhibitor replacement in sepsis is a potentially useful clinical approach. Crit Care Med 2000; 28 (Suppl 9):S68–S73

    PubMed  CAS  Google Scholar 

  126. White B, Schmidt M, Murphy C, et al. Activated protein C inhibits lipopolysaccharide-induced nuclear translocation of nuclear factoor kappaB (NF-kappaB) and tumor necrosis factor alpha (TNF-alpha) production in the THP-1 monocytic cell line. Br J Haematol 2000; 110:130–134

    Article  PubMed  CAS  Google Scholar 

  127. Ziegler-Heitbrock HW. Molecular mechanisms in tolerance to lipopolysaccharide. J Inflamm 1995; 45:13–26

    PubMed  CAS  Google Scholar 

  128. Barroso-Aranda J, Schmid-Schonbein GW, Zweifach BW. Polymorphonuclear neutrophil contribution to induced tolerance to bacterial lipopolysaccharide. Circ Res 1991; 69:1196–1206

    PubMed  CAS  Google Scholar 

  129. Fujii E, Yoshioka T, Ishida H, Irie K, Muraki T. Evaluation of iNOS-dependent and independent mechanisms of the microvascular permeability change induced by lipopolysaccharide. Br J Pharmacol 2000; 130:90–94

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sielenkämper, A.W., Kvietys, P., Sibbald, W.J. (2002). Microvascular Alterations in Sepsis. In: Vincent, JL., Carlet, J., Opal, S.M. (eds) The Sepsis Text. Springer, Boston, MA. https://doi.org/10.1007/0-306-47664-9_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47664-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7620-0

  • Online ISBN: 978-0-306-47664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics