Skip to main content

The Role of Glutathione and Glutathione S-transferases in Plant Reaction and Adaptation to Xenobiotics

  • Chapter
Significance of Glutathione to Plant Adaptation to the Environment

Part of the book series: Plant Ecophysiology ((KLEC,volume 2))

Conclusions

Glutathione S-transferase and glutathione interact perfectly in protecting plants from electrophilic xenobiotics and endogenous toxic compounds. They are also involved into hormone metabolism and internal signal cascades. The enzyme class shows high flexibility and represents the starting point of a well developed metabolic pathway for the degradation and excretion of xenobiotic conjugates. Genomics and proteomics will provide more insight in the presence and activity of the GSTs in plants, and most important at all, about natural functions and their modulation under stress. Thus, glutathione and glutathione mediated metabolism of xenobiotics and agro-chemicals play an important role in the adaptation of plants to the environment and to a man made pollution climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment research tool.-J. Mol. Biol. 215: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Altshuller A.P. 1983. Natural volatile organic substances and their effect on air quality in the United States.-Atmos. Environ. 17: 2131–2135.

    CAS  Google Scholar 

  • Anders W.M. 1988. Glutathione-dependent toxicity: biosynthesis and bioactivation of cyto-toxic S-conjugates.-ISI Atlas of Science: Pharmacology 2: 99–104.

    CAS  Google Scholar 

  • Anderson J.W. 1990. Sulfur metabolism in plants.-In: The biochemistry of plants, Vol. 16, Academic Press, pp. 327–381.

    Google Scholar 

  • Anderson M.P., Gronwald J.W. 1991. Atrazine resistance in a velvetleaf (Abutilon theo-phrasti) biotype due to enhanced glutathione S-transferase activity.-Plant Physiol. 96: 104–109.

    CAS  PubMed  Google Scholar 

  • Bakke J. E., Davison, K.L. 1994. Effects of AT-125 on the processing of glutathione conjugates in vivo.-Bull. Soc. Lux. Biol. Clin., Spec. Iss. 1993: 108–113.

    Google Scholar 

  • Bilang J., Macdonald H., King P.J., Sturm A. 1993. A soluble auxin-binding protein from Hyoscyamus muticus is a glutathione S-transferase.-Plant Physiol. 102: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Blattmann P., Gross D., Kriemler H.P., Ramsteiner K. 1986. Identification of thiolactic type conjugates as major degradation products in glutathione dependent metabolism of the 2-chloroacetamide herbicides metolachlor (Dual), dimetachlor (Teridox) and Pretilachlor (Kifit).-6th Int. Congr Pestic Chemistry (IUPAC), Ottawa, Can. Abstr. 7A-02.

    Google Scholar 

  • Booth J., Boyland E., Sims P. 1961. An enzyme from rat liver catalyzing conjugations with glutathione.-Biochem. J. 79: 516–524.

    PubMed  CAS  Google Scholar 

  • Breaux E.J., Patanella J.E., Sanders E.F. 1987. Chloroacatanilide herbicide selectivity: analysis of glutathione and homoglutathione in tolerant, susceptible and safened seedlings.-J. Agric. Food Chem. 35: 474–478.

    Article  CAS  Google Scholar 

  • Breddam K., Sörensen S.B., Ottesen M. 1983. Isolation of a carboxypeptidase from malted barley by affinity chromatography.-Carlsberg Res. Comm. 48: 217–230.

    CAS  Google Scholar 

  • Breddam K., Sörensen S.B., Ottesen M. 1985. Isolation of carboxypeptidase II from malted barley by affinity chromatography.-Carlsberg Res. Comm. 50: 199–209.

    CAS  Google Scholar 

  • Breddam K., Sörensen S.B. 1987. Isolation of carboxypeptidase III from malted barley by affinity chromatography.-Carlsberg Res. Comm. 52: 257–283.

    Google Scholar 

  • Brown H.M., Neighbors S.M. 1978. Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity.-Pestic. Biochem. Physiol. 29: 112–120.

    Google Scholar 

  • Cole D. 1994. Detoxification and activation of agrochemicals in plants.-Pestic. Sci. 42: 209–222.

    CAS  Google Scholar 

  • Coleman J.O.D., Randall R.A., Blake-Kalff M.M.A. 1997. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartimentation.-TIPS 2, 4: 144–151.

    Google Scholar 

  • Coupland D. 1991. Detoxification of herbicides in plants.-In: Caseley J.C., Cussan G.W., Atkin R.K. (Eds.), Herbicide resistance in weeds and crops, pp. 263–278.-Wiley, New York.

    Google Scholar 

  • Cummins I., Cole, D.J. and Edwards, R. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black grass.-Plant J. 18: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Daniel V. 1993. Glutathione S-transferases: gene structure and regulation of expression.-Crit. Rev. Biochem. Molecul. Biol. 28: 173–207.

    CAS  Google Scholar 

  • Dean J.V., Gronwald J.W., Eberlein C.V. 1991. Induction of glutathione S-transferase isozymes in Sorghum by herbicide antidotes.-Plant Physiol. 92: 467–473.

    Google Scholar 

  • Dean J.V., Devarenne T.P., Lee I.S., Orlofsky L.E. 1995. Properties of a maize glutathione S-transferase that conjugates coumaric acid and other phenylpropanoids.-Plant Physiol. 10: 985–994.

    Google Scholar 

  • Dean J.V., Devarenne T.P. 1997. Peroxidase-mediated conjugation of glutathione to unsatu-rated phenylpropanoids: evidence against glutathione S-transferase involvement.-Physiol. Plant. 99: 271–278.

    Article  CAS  Google Scholar 

  • Debus R., Schröder P. 1990. Responses of Petunia hybrida and Phasaeolus vulgaris to fumigation with difluoro-chloro-bromo-methane (Halon 1211).-Chemosphere 21: 1499–1505.

    Article  CAS  Google Scholar 

  • Dekant W., Vamvakas S., Bertold K., Schmidt S., Wild D., Henschler D. 1986. Bacteriallyase mediated cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlo-robutadiene.-Chem.-Biol. Interactions: 31–45.

    Google Scholar 

  • Dekant W., Martens G., Vamakas S., Metzler M., Henschler D. 1987. Bioactivation of tetra-chloroethene: role of glutathione S-transferase catalyzed conjugation versus cytochrome P-450 dependent phospholipid alcylation.-Am. Soc. Pharm. Exp. Ther.: 702–709.

    Google Scholar 

  • Devereux I., Haeberli P., Smithies O. 1984. A comprehensive set of sequence analysis programs for the VAX.-Nucl. Acid Res. 12: 387–395.

    CAS  Google Scholar 

  • Dhinsa R.S. 1991. Drought stress enzymes of glutathione metabolism injury and protein synthesis in Tortula-ruralis.-Plant Physiol. 95: 648–651.

    Google Scholar 

  • Diesperger H., Sandermann H. 1979. Soluble and microsomal glutathione S-transferase activities in pea seedlings (Pisum sativum L.).-Planta 146: 643–648.

    Article  CAS  Google Scholar 

  • Dixon D.P., Cole D.J., Edwards R. 1999. Dimerisation of maize glutathione transferases in recombinant bacteria.-Plant Mol. Biol. 40: 997–1008.

    Article  PubMed  CAS  Google Scholar 

  • Droog F.N.J., Hooykaas P.J.J., Libbenga K.R., van der Zaal E.J. 1993. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity.-Plant Mol. Biol. 21: 965–972.

    Article  PubMed  CAS  Google Scholar 

  • Droog F. 1997. Plant glutathione S-transferases, a tale of theta and tau.-J. Plant Growth Regul. 16: 95–107.

    CAS  Google Scholar 

  • Dudler R., Hertig C., Rebman G., Bull J., Mauch F. 1991. A pathogen induced wheat gene encodes a protein homologous to glutathione S-transferases.-Mol. Plant Microbe Interact. 4: 14–18.

    PubMed  CAS  Google Scholar 

  • Edwards R., Owen W.J. 1989. The comparative metabolism of the s-triazine herbicides atrazine and trebutryne in suspension cultures of potato and wheat.-Pestic. Bio-chem. Physiol. 34: 246–254.

    CAS  Google Scholar 

  • Edwards R., Dixon R.A. 1991. Glutathione S-cinnamoyl transferases in plants.-Phytochem. 30: 79–84.

    CAS  Google Scholar 

  • Edwards R., Cole D.J. 1996. Glutathione transferases in wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides.-Pestic. Biochem. Physiol. 54: 96–104.

    Article  CAS  Google Scholar 

  • Ezra G., Stephenson G.R. 1985. Comparative metabolism of atrazine and EPTC in Proso Millet (Panicum millaceum L) and corn.-Pestic. Biochem. Physiol. 24: 207–212.

    Article  CAS  Google Scholar 

  • Ezra G., Stephenson G.R. 1986. The physiology of metazachlor and safener 145 138 interactions in corn.-6th Intl. conference on pesticide chemistry (IUPAC) Ottawa, Canada, Abstr. 33D-12.

    Google Scholar 

  • Frear D.S., Swanson H.R. 1970. The biosynthesis of S-(4-ethylamino-6-isopropylamino-s-5-triazino)glutathione: partial purification and properties of a glutathione S-transferase from corn.-Phytochem. 9: 2123–2132.

    Article  CAS  Google Scholar 

  • Frear D.S., Swanson H.R., Mansager E.R. 1983. Acifluorfen metabolism in soybean: di-phenylether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates.-Pestic. Biochem. Physiol. 20: 299–316.

    Article  CAS  Google Scholar 

  • Frear D.S., Swanson H.R., Mansager E.R. 1985. Alternate pathways of metribuzin metabolism in soybean: formation of N-glucoside and homoglutathione conjugates.-Pestic. Biochem. Physiol. 23: 56–59.

    Article  CAS  Google Scholar 

  • Goneau M., Mornet R., Laloue M. 1998. A Nicotiana plumbaginifolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase.-Phys. Plant. 103: 114–124.

    Google Scholar 

  • Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione-S-transferases: the first step in enzymatic mercapturic acid formation.-J. Biol. Chem 249: 7130–39.

    PubMed  CAS  Google Scholar 

  • Habig W.H., Jakoby W.B. 1981. Glutathione S-transferases (rat and human).-Methods Enzymol. 77: 218–31.

    PubMed  CAS  Google Scholar 

  • Hatton P.J., Dixon D., Cole D.J., Edwards R. 1996. Glutathione transferase activities and herbicide selectivity in maize and associated weed species.-Pestic. Sci. 46: 267–275.

    Article  CAS  Google Scholar 

  • Hayes J.D., Pulford D.J. 1995. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.-Crit. Rev. Biochem. Mol. Biol. 30: 445–600.

    PubMed  CAS  Google Scholar 

  • Hubbell J.P., Casida J.E. 1977. Metabolic fate of the N,N-dialkylcarbamoyl moiety of thio-carbamate herbicides in rats and corn.-J. Agric. Food Chem. 25: 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T. 1987. The role of cardiac glutathione S-transferases and energy-linked transport system for glutathione S-conjugates.-In: Mantle T.J., Picket C.B., Hayes J.D. (Eds.), Glutathione S-transferases and carcinogenesis, pp. 51–53.-Taylor & Francis, London, New York and Philadelphia.

    Google Scholar 

  • Ishikawa T., Wright C.D., Ishizuka H. 1994. GS-X pump is functionally overexpressed in cisdiamminedichloroplatinum (Il)-resistant human leukemia HL-60 cells and down-regulated by cell differentation.-J. Biol. Chem. 269: 29085–29093.

    PubMed  CAS  Google Scholar 

  • Izryk G.P., Fuerst E.P. 1993. Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays).-Plant Physiol. 102: 803–810.

    Google Scholar 

  • Izryk G.P., Fuerst E.P. 1997. Characterization and induction of maize glutathione S-transferases involved in herbicide detoxification.-In: Hatzios K.K. (ed.), Regulation of enzymatic systems detoxifying xenobiotics in plants, pp. 155–170.-NATO ASI Series Vol. 37, Kluwer, NL.

    Google Scholar 

  • Kosower E.M. 1976. Chemical properties of glutathione.-In: Arias I.M., Jakoby W.B. (Eds.) Glutathione: metabolism and function, pp. 1–15.-Raven press, New York.

    Google Scholar 

  • Lamoureux G.L., Stafford L.E. & Tanaka F.S. 1971. Metabolism of 2-chloro-N-isopropyl-acetanilidine (Propachlor) in the leaves of corn, Sorghum, sugarcane, and barley.-J. Agric. Food Chem.: 346–350.

    Google Scholar 

  • Lamoureux G.L., Rusness D.G. 1980. In vitro metabolism of pentachloronitrobenzene to pentachloromethylthiobenzene by onion: characterization of glutathione S-transferase, cysteine C-S lyase, and S-adenosylmethionine methyl transferase activities.-Pestic. Biochem. Physiol. 14: 50–61.

    Article  CAS  Google Scholar 

  • Lamoureux G.L., Rusness D.G. 1983. Malonylcysteine conjugates as end-products of glutathione conjugate metabolism in plants.-In: Miyamoto J. (ed.), Human welfare and the environment, pp. 295–300.-Pergamon Press, Oxford.

    Google Scholar 

  • Lamoureux G.L., Rusness D.G. 1986. Xenobiotic conjugation in higher plants.-In: Paulson G.D., Caldwell J., Hutson D.H., Menn J.J. (Eds.), Xenobiotic conjugation chemistry 299, pp. 62–105.-Am. Chem. Soc. Washington.

    Google Scholar 

  • Lamoureux G.L., Frear D.S. 1987. Current problems, trends and developments in pesticide metabolism in plants.-In: Greenhalgh R., Roberts T.R. (Eds.), Pesticide science and biotechnology, pp. 455–463.-Blackwell Scientific, Oxford.

    Google Scholar 

  • Lamoureux G.L., Rusness D.G. 1989. The role of glutathione and glutathione S-transferases in pesticide metabolism, selectivity and mode of action in plants and insects.-In: Dolphin D., Poulson R., Avramovic O. (Eds.), Glutathione: chemical biochemical and medical aspects, Vol IIIB, Ser: Enzyme and Cofactors, pp. 153–196.-J. Wiley & Sons, New York.

    Google Scholar 

  • Lamoureux G.L., Rusness D.G., Schröder P., Rennenberg H. 1991. Diphenyl ether herbicide metabolism in a spruce cell suspension culture: the identification of two novel metabolites derived from a glutathione conjugate.-Pestic. Biochem. Physiol. 39: 291–301.

    Article  CAS  Google Scholar 

  • Lamoureux G.L., Rusness D.G. 1993. Glutathione in the metabolism and detoxification of the xenobiotics in plants.-In: De Kok L.J., Stulen I., Rennenberg H., Brunold C., Rauser W. (Eds.), Sulfur nutrition and assimilation in higher plants.-SPB Academic Press, The Hague.

    Google Scholar 

  • Lamoureux G.L., Rusness D.G., Schröder P. 1993. Metabolism of a diphenylether herbicide to a volatile thioanisole and a polar sulfonic acid metabolite in spruce (Picea).-Pestic. Biochem. Physiol. 47: 8–20.

    Article  CAS  Google Scholar 

  • Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H 2 O 2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.-Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Li Z.S., Zhao Y., Rea P.A. 1995. Magnesium adenosine 5’-triphosphate-energized transport of glutathione S-conjugates by plant vacuolar membrane vesicles.-Plant Physiol. 117: 1257–1268.

    Google Scholar 

  • Li Z-S., Alfenito M., Rea P.A., Walbot V., Dixon R.A. 1997. Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump.-Phytochem. 689–693 Vol. 45, Nr. 4.

    CAS  Google Scholar 

  • Mannervik B., Alin P., Danielson U.H., Guthenberg C., Jensson H., Ozer N., Tahir M.K., Wearholm M., Jornvall H. 1987. Glutathione S-transferases and carcinogenesis.-Taylor & Francis: 19–29.

    Google Scholar 

  • Mannervik B., Danielson U.H. 1988. Glutathione S-transferases-structure and catalytic activity.-CRC Crit. Rev. Biochem. 23, No. 3: 283–337.

    PubMed  CAS  Google Scholar 

  • Marrs K.A., Alfenito M.R., Lloyd A.M., Walbot V. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2.-Nature 375: 397–400.

    Article  PubMed  CAS  Google Scholar 

  • Marrs K.A. 1996. The functions and regulation of glutathione S-transferases in plants.-Annu. Rev. Plant Physiol. 47: 127–158.

    CAS  Google Scholar 

  • Martinoia E., Grill E., Tommasini R., Kreuz K., Amrhein N. 1993. ATP-dependent glutathione S-conjugate „zexport“ pump in the vacuolar membrane of plants.-Nature 364: 247–249.

    Article  CAS  Google Scholar 

  • Mauch F., Dudler R. 1993. Differential induction of distinct glutathione S-transferase of wheat by xenobiotics and by pathogen attack.-Plant Physiol. 102: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  • Mayer P., Kriemler H.P., Laanio T.L. 1981. Metabolism of N-(1′,2′-dimethylpropyl)-N′-ethyl-6-methylthio-l,3,5-triazine-2,4-diamine (C 18 898) in paddy rice.-Agric. Biol. Chem. 45: 361–368.

    CAS  Google Scholar 

  • Mazelis M., Creveling R.K. 1975. Purification and properties of S-alkyl-L-cysteine from seedlings of Acacia farnesiana Willd.-Biochem. J. 147: 485–491.

    PubMed  CAS  Google Scholar 

  • Meyer R.C., Goldsborough P.B., Woodson W.R. 1991. An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione S-transferase.-Plant Mol. Biol. 17: 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Mikola L. 1983. Germinating barley grains contain five acid carboxypeptidases with complementary substrate specificities.-Biochim. Biophys. Acta 747: 241–252.

    CAS  Google Scholar 

  • Morgenstern R., Depierre J.W., Jörnvall H. 1985. Microsomal glutathione transferase.-J. Biol. Chem. 260: 13976–13983.

    PubMed  CAS  Google Scholar 

  • Naumann K. 1993. Chlorchemie der Natur.-Chemie in unserer Zeit 27: No.1, 33–41.

    Article  CAS  Google Scholar 

  • Pickett C.B., Lu A.Y.H. 1989. Glutathione S-transferase: gene structure, regulation, and biological function.-Annu. Rev. Biochem. 58: 743–764.

    Article  PubMed  CAS  Google Scholar 

  • Pflugmacher S., Sandermann H., Schröder P. 2000. Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics.-Phytochem. 54: 267–273.

    Article  CAS  Google Scholar 

  • Ploemen J.H.T.M., Van Ommen B., Van Bladeren J. 1990. Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate.-Biochem. Pharmacol. 40: 1631–1635.

    Article  PubMed  CAS  Google Scholar 

  • Ploemen J.H.T.M., Bogaards J.J.P., Veldink G.A., Van Ommen B., Jansen D.H.M., Van Bladeren P.J. 1993. Isoenzyme selective irreversible inhibition of rat and human glutathione S-transferase by ethacrynic acid and two brominated derivates.-Biochem. Pharmacol. 45: 633–639.

    Article  PubMed  CAS  Google Scholar 

  • Ploemen J.H.T.M., Van Schanke A., Van Ommen B., Van Bladeren P.J. 1994. Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1-1.-Cancer Res. 54: 915–919.

    PubMed  CAS  Google Scholar 

  • Reinemer P., Prade L., Hof P., Neuefeind T., Huber R., Zettl R., Palme K., Schell J., Koelnn I., Barutnik H.D., Bieseler B. 1996. Three dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferase and a novel active site architecture.-J. Mol. Biol. 255: 289–309.

    Article  PubMed  CAS  Google Scholar 

  • Riechers D.E., Fuerst E.P., Miller K.D. 1996. Initial metabolism of dimethenamid in safened and unsafened wheat shoots.-J. Agric. Food Chem. 44: 1558–1564.

    Article  Google Scholar 

  • Rusness D.G., Still G.G. 1977. Partial purification and properties of S-cysteinyl-hydroxy-chlorpropham transferase from oats (Avena sativa L.).-Pestic. Biochem. Physiol. 7: 220–231.

    CAS  Google Scholar 

  • Sandermann H. 1994. Higher plant metabolism of xenobiotics: the ‘green liver’ concept.-Pharmacogenetics 4: 225–241.

    PubMed  CAS  Google Scholar 

  • Sandermann H., Haas M, Meßner B., Pflugmacher S., Schröder P., Wetzel A. 1997. The role of glucosyl and malonyl conjugation in herbicide selectivity.-In: Hatzios K.K. (ed.), Regulation of enzymatic systems detoxifying xenobiotics in plants, pp. 211–231.-Kluwer Acad. Publ. The Netherlands.

    Google Scholar 

  • Schröder P., Lamoureux G.L., Rusness D.G., Rennenberg H. 1990. Glutathione S-transferase activity in spruce needles.-Pestic. Biochem. Physiol. 37: 211–218.

    Google Scholar 

  • Schröder P. 1993. Detoxification and metabolism of organic xenobiotics in Picea and Pinus.-In: Schröder P., Rether B., Frank H. (Eds.), Volatile organic pollutants: levels, fate and ecotoxicological impact, pp. 104–117.-Maraun, Frankfurt.

    Google Scholar 

  • Schröder P., Nathaus F., Lamoureux G.L., Rusness D.G. 1993. The induction of glutathione S-transferase and C-S lyase in the needles of spruce trees.-Phyton 32: 127–131.

    Google Scholar 

  • Schröder P. 1996. Entgiftung elektrophiler Xenobiotika in Koniferen durch Konjugation mit Glutathion und Metabolismus der Glutathion-Konjugate.-Habilitationsschrift, Technische Universität München-Weihenstephan.

    Google Scholar 

  • Schröder P., Belford E.J. 1996. Untersuchungen zur Aktivität von Glutathion S-Transferasen in Nadeln von Fichten im Schulterberg-und Christlumprofil.-FBVA-Rep. 94: 75–82.

    Google Scholar 

  • Schröder P., Pflugmacher S. 1996. Induction of glutathione S-transferase activity in Norway spruce by xenobiotics and herbicide safeners.-Appl. Bot. 70: 97–100.

    Google Scholar 

  • Schröder P. 1997. Fate of Glutathione S-conjugates in plants: cleavage of the glutathione moiety.-In: Hatzios K.K., (ed.), Regulation of enzymatic systems detoxifying xenobiotics in plants.-NATO ASI Series Vol. 37, Kluwer, NL, pp. 233–244.

    Google Scholar 

  • Schröder P., Götzberger C. 1997. Partial purification and characterization of glutathione S-transferase isozymes from the leaves of Juniperus communis, Larix decidua and Taxus baccata.-Appl. Bot. 71: 31–37.

    Google Scholar 

  • Schröder P. 1998a. Entgiftung elektrophiler Xenobiotika in Koniferen durch Konjugation mit Glutathion und Metabolismus der Glutathion-Konjugate.-Verlag der Deutschen Hochschulschriften, Egelsbach.

    Google Scholar 

  • Schröder P. 1998b. Halogenated air pollutants.-In: De Kok L.J., Stulen I. (Eds.), Responses of plant metabolism to air pollution, pp. 131–145.-Backhuys Publ. Leiden.

    Google Scholar 

  • Schröder P., Stampfl A. 1999. Visualization of glutathione conjugation and induction of glutathione S-transferases in onion (Allium cepa L.) epidermal tissue.-Z. Natur-forsch. 54C: 1033–1041.

    Google Scholar 

  • Schupahn I., Westphal D., Haque A., Ebing W. 1981. Biological and chemical behavior of perhalogenmethylmercapto fungicides: metabolism and in vitro reactions of di-chlorfuanid in comparison with captan sulfur.-In: Rosen J., Magee P., Casida J. (Eds.), Sulfur in pesticide action and metabolism 158, pp. 65–85.-Am. Chem. Soc. Washington.

    Google Scholar 

  • Shimabukuro R.H., Frear D.S., Swanson H.R., Walsh W.C. 1971. Glutathione conjugation. An enzymatic basis for atrazine resistance in corn.-Plant Physiol. 47: 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Shimabukuro R.H., Lamoureux G.L., Swanson H.R., Walsh W.C., Stafford L.E., Frear D.S. 1973. Metabolism of substituted diphenyl-ether herbicides in plants. II. Identification of a new fluorodifen metabolite, S-(2-nitro-4-trifluoromethyl)glutathione in peanut.-Pestic. Biochem. Physiol. 3: 483–494.

    Article  CAS  Google Scholar 

  • Shimabukuro R.H. 1976. Glutathione conjugation of herbicides in plants and animals and its role in herbicide selectivity.-The Asian-Pacific Weed Science Society: 183–186.

    Google Scholar 

  • Singh B.R., Shaw R.W. 1988. Selective inhibition of oat glutathione S-transferase activity by tetrapyrroles.-FEBS Lett. 234: 379–382.

    Article  CAS  Google Scholar 

  • Sommer A., Böger P. 1999. Characterization of recombinant corn glutathione S-transferase isoforms I, II, III and IV.-Pestic. Biochem. Physiol. 63: 127–138.

    Article  CAS  Google Scholar 

  • Sweetser P.B., Schow G.S., Hutchinson J.M. 1982. Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals.-Pestic. Biochem. Physiol. 17: 18–23.

    Article  CAS  Google Scholar 

  • Takahashi Y., Nagata T. 1992. parB: an auxin-regulated gene encoding glutathione S-transferase.-PNAS 89: 56–59.

    PubMed  CAS  Google Scholar 

  • Talalay P., De Long M.J., Prochaska H.J. 1988. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis.-PNAS 85: 8261–8265.

    PubMed  CAS  Google Scholar 

  • v.d. Trenck T., Sandermann H. 1978. Metabolism of benzo[a]pyrene in cell suspension cultures of parsley (Petroselium hortense Hoff) and soybean (Glycine max L.).-Planta 141: 245–252.

    Article  Google Scholar 

  • Wiegand R.C., Shah D.M., Mozer T.J., Harding E.I., Diaz-Collier J., Saunders C., Jaworsky E.G., Tiemeier D.C. 1986. Messenger RNA encoding a glutathione S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment.-Plant Mol. Biol. 7: 235–243.

    Article  CAS  Google Scholar 

  • Wilce M.C.J., Parker M.W. 1994. Structure and function of glutathione S-transferases.-Biochim. Biophys. Acta 1205: 1–18.

    PubMed  CAS  Google Scholar 

  • Wittenbach V.A., Koeppe M. K., Lichtner F.T., Zimmermann W.T., Reiser R.W. 1994. Basis of selectivity of trisulfuron methyl in sugar beets (Beta vulgaris).-Pestic. Biochem. Physiol. 49: 72–81.

    Article  CAS  Google Scholar 

  • Wolf A.E., Dietz K.J., Schröder P. 1996. A carboxypeptidase degrades glutathione conjugates in the vacuoles of higher plants.-FEBS Lett. 384: 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Zettl R., Schell J., Palme K. 1994. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3 H]indole-3-acetic acid: identification of a glutathione S-transferase.-Proc. Natl. Acad. Sci. USA 91: 689–693.

    PubMed  CAS  Google Scholar 

  • Zhang B., Singh K.B. 1994. OCS element promoter sequences are activated by auxin and salicylic acid in Arabidopsis.-PNAS 91: 2507–2511.

    PubMed  CAS  Google Scholar 

  • Zhou J., Goldsbrough P.B. 1993. An Arabidopsis gene with homology to glutathione S-transferase is regulated by ethylene.-Plant Mol. Biol. 22: 517–523.

    Article  PubMed  CAS  Google Scholar 

  • Zuber H., Matile P.H. 1968. Acid carboxypeptidases: their occurrence in plants, intracellular distribution and possible function.-Z. Naturforsch. 23B: 663–665.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schröder, P. (2001). The Role of Glutathione and Glutathione S-transferases in Plant Reaction and Adaptation to Xenobiotics. In: Grill, D., Tausz, M., De Kok, L.J. (eds) Significance of Glutathione to Plant Adaptation to the Environment. Plant Ecophysiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47644-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47644-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0178-9

  • Online ISBN: 978-0-306-47644-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics