Skip to main content

The Role of Glutathione in Plant Reaction and Adaptation to Excess Metals

  • Chapter
Significance of Glutathione to Plant Adaptation to the Environment

Part of the book series: Plant Ecophysiology ((KLEC,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Lahham A., Rhode V., Heim P., Leuchter R., Veeck L, Wunderlich C., Wolf K., Zimmermann M. 1999. Biosynthesis of phytochelatins in fission yeast. Phytochelatin synthesis: a second role for the glutathione synthetase gene of Schizosaccharomyces pombe.-Yeast 15: 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Ahner B.A., Morel F.M.M. 1995. Phytochelatin production in marine algae. 2. Induction by various metals.-Limnol. Oceanogr. 40: 658–665.

    CAS  Google Scholar 

  • Carnegie P.R. 1963. Isolation of a homologue of GSH and other acidic peptides from seedlings of Phaseolus aureus.-Biochem. J. 89: 459–471.

    PubMed  CAS  Google Scholar 

  • Chen J., Zhou J., Goldsbrough P.B. 1997. Characterization of phytochelatin synthase from tomato.-Physiol. Plant. 101: 165–172.

    CAS  Google Scholar 

  • Clemens S., Kim E.J., Neumann D., Schroeder J.I. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeasts.-EMBO J. 18: 3325–3333.

    Article  PubMed  CAS  Google Scholar 

  • Dameron C.T., Reese R.N., Mehra R.K., Kortan A.R., Carroll P.J., Steigerwald M.L., Brus L.E., Winge D.R. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites.-Nature 338: 596–597.

    Article  CAS  Google Scholar 

  • De Knecht J.A., Van Dillen M., Koevoets P.L.M., Schat H., Verkleij J.A.C., Ernst W.H.O. 1994. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene cucubalus.-Plant Physiol. 104: 255–261.

    PubMed  Google Scholar 

  • Freedman J.H., Ciriolo M.R., Peisach J. 1989. The role of glutathione in copper metabolism and toxicity.-J. Biol. Chem. 264: 5598–5605.

    PubMed  CAS  Google Scholar 

  • Friederich M., Kneer R., Zenk M.H. 1998. Enzymic synthesis of phytochelatins in gram quantities.-Phytochem, 49: 2323–2329.

    Article  CAS  Google Scholar 

  • Fowler B.A., Hildebrand C.E., Kojima Y., Webb M. 1987. Nomenclature of metallothioneins.-In: Kägi J.H.R., Kojima Y. (Eds.) Metallothionein II, pp. 19–61.-Experientia Suppl. 52 Birkhäuser Verlag, Basel.

    Google Scholar 

  • Gawel J.E., Ahner B.A., Friedland A.J., Morel F.M.N. 1996. Role for heavy metals in forest decline indicated by phytochelatin measurements.-Nature 381: 64–65.

    Article  CAS  Google Scholar 

  • Gekeler W., Grill E., Winnacker E.-L., Zenk M.H. 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes.-Arch. Microbiol. 150: 197–202.

    Article  CAS  Google Scholar 

  • Gekeler W., Grill E., Winnacker E.-L., Zenk M.H. 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins.-Z. Naturforsch. 44c: 361–369.

    Google Scholar 

  • Grill E., Winnacker E.-L., Zenk M.H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants.-Science 230: 674–676.

    CAS  PubMed  Google Scholar 

  • Grill E., Winnacker E.-L., Zenk M.H. 1986a. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales.-FEBS Lett. 205: 47–50.

    Article  CAS  Google Scholar 

  • Grill E., Winnacker E.-L., Zenk M.H. 1986b. Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells.-FEBS Lett. 197: 115–120.

    Article  CAS  Google Scholar 

  • Grill E., Winnacker E.-L., Zenk M.H. 1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins.-Natl. Acad. Sci. USA 84: 439–443.

    CAS  Google Scholar 

  • Grill E., Thumann J., Winnacker E.-L., Zenk M.H. 1988. Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media.-Plant Cell Rep. 7: 375–378.

    CAS  Google Scholar 

  • Grill E. 1989. Phytochelatins in plants.-In: Hamer D.H., Winge D.R. (Eds.), Metal ion homeostasis: molecular biology and chemistry, pp. 283–300.-Alan R. Liss, Inc. New York.

    Google Scholar 

  • Grill E., Löffler S., Winnacker E.-L., Zenk M.H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).-Proc. Natl. Acad. Sci. USA 86: 6838–6842.

    CAS  PubMed  Google Scholar 

  • Grill E., Winnacker E.-L., Zenk M.H. 1991. Phytochelatins.-Methods Enzymol. 205: 333–341.

    PubMed  CAS  Google Scholar 

  • Gupta S.C., Goldsbrough P.B. 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines.-Plant Physiol. 97: 306–312.

    CAS  PubMed  Google Scholar 

  • Gupta M, Tripathi R.D., Rai U.N., Chandra P. 1998. Role of glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle and Vallisneria spiralis L. under mercury stress.-Chemosphere 37: 785–800.

    Article  CAS  Google Scholar 

  • Ha S.-B., Smith A.P., Howden R., Dietrich W.M., Bugg S., O’Connell M.J., Goldsbrough P.B., Cobbett C.S. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.-PlantCell 11: 1153–1163.

    CAS  Google Scholar 

  • Hayashi Y., Isobe M., Nakagawa C.W., Kawabata M. 1991a. Cadystins: small metal-binding peptides.-Methods Enzymol. 205: 348–358.

    PubMed  CAS  Google Scholar 

  • Hayashi Y., Nakagawa C.W., Mutoh N., Isobe M., Goto T. 1991b. Two pathways in the biosynthesis of cadystins (γEC n G) in the cell-free system of the fission yeast.-Biochem. Cell Biol. 69: 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Howden R., Goldsbrough P.B., Andersen C.R., Cobbett C.S. 1995a. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.-Plant Physiol. 107: 1059–1066.

    PubMed  CAS  Google Scholar 

  • Howden R., Andersen C.R., Goldsbrough P.B., Cobbett C.S. 1995b. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.-Plant Physiol. 107: 1067–1073.

    PubMed  CAS  Google Scholar 

  • Jackson P.J., Unkefer C.J., Doolen J.A., Watt K., Robinson NJ. 1987. Poly(γ-glutamylcysteinyl glycine: its role in cadmium resistance in plant cells.-Proc. Natl. Acad. Sci. USA 84: 6619–1123.

    PubMed  CAS  Google Scholar 

  • Juang R.-H., McCue K.F., Ow D.W. 1993. Two purine biosynthetic enzymes that are required for cadmium tolerance in Schizosaccharomyces pombe utilize cysteine sulfinate in vitro.-Arch. Biochem. Biophys. 304: 392–401.

    Article  PubMed  CAS  Google Scholar 

  • King T.E., Morris R.O. 1967. Determination of acid-labile sulfide and sulfhydryl groups.-Methods Enzymol. 10: 634–641.

    CAS  Google Scholar 

  • Klapheck S., Chrost B., Starke J., Zimmermann H. 1992. γ-Glutamylcysteinylserine-a new homologue of glutathione in plants of the family Poaceae.-Bot. Acta 105: 174–179.

    CAS  Google Scholar 

  • Klapheck S., Fliegner W., Zirnmer I. 1994. Hydroxymethyl-phytochelatins [(γ-Glutamylcysteinylserine n-serine] are metal-induced peptides of the Poaceae.-Plant Physiol. 104: 1325–1332.

    Article  PubMed  CAS  Google Scholar 

  • Klapheck S., Schlunz S., Bergmann L. 1995. Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L.-Plant Physiol. 107: 515–521.

    PubMed  CAS  Google Scholar 

  • Kneer R., Zenk M.H. 1992. Phytochelatins protect plant enzymes from heavy metal poisoning.-Phytochem. 31: 2663–2667.

    Article  CAS  Google Scholar 

  • Kneer R., Kutchan T.M., Hochberger A., Zenk M.H. 1992. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin.-Arch. Microbiol. 157: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Kneer R., Zenk M.H. 1997. The formation of Cd-phytochelatin complexes in plant cell cultures.-Phytochem. 44: 69–74.

    Article  CAS  Google Scholar 

  • Kon-Ya Y., Yoshimura E., Yamazaki S., Toda S. 1990. Identification of-binding peptides of fission yeast Schizosaccharomyces pombe by FRIT-FAB LC/MS.-Agric. Biol. Chem. 54: 3327–3329.

    PubMed  CAS  Google Scholar 

  • Kondo N., Imai K., Isobe M., Goto T., Murasugi A., Wada-Nakagawa C., Hayashi Y. 1984. Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in fission yeast-separation, revision of structures and synthesis.-Tetrahedron Lett. 25: 3869–3872.

    Article  CAS  Google Scholar 

  • Kubota H., Sato K., Yamada T., Maitani T. 1995. Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in normal root cultures of Rubia tictorum L.-Plant Sci. 106: 157–166.

    Article  CAS  Google Scholar 

  • Kubota H., Sato K., Yamada T., Maitani T. 2000. Phytochelatin homologs induced in hairy roots of horseradish.-Phytochem. 53: 239–245.

    Article  CAS  Google Scholar 

  • Leuchter R., Wolf K., Zimmermann M. 1998. Isolation of an Arabidopsis cDNA complementing a Schizosaccharomyces pombe mutant deficient in phytochelatin synthesis (Accession No. AJ006787).-Plant Physiol. 117: 1526.

    Google Scholar 

  • Loeffler S., Hochberger A., Grill E., Winnacker E.-L., Zenk M.H. 1989. Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product.-FEBS Lett. 258: 42–46.

    Article  CAS  Google Scholar 

  • Macnair M.R. 1993. The genetics of metal tolerance in vascular plants.-New Phytol. 124: 541–559.

    CAS  Google Scholar 

  • Macnicol P.K. 1987. Homoglutathione and glutathione synthetases of legume seedlings: partial purification and substrate specificity.-Plant Sci. 53: 229–235.

    Article  CAS  Google Scholar 

  • Maitani T., Kubota H., Sato K., Yamada T. 1996. The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum.-Plant Physiol. 110: 1145–1150.

    PubMed  CAS  Google Scholar 

  • Mari S., Vatamaniuk O.K., Rea P.A. 2000. Is phytochelatin synthase a dipeptidyl or tripeptidyl transpeptidase?-Amer. Soc. Plant Physiol. Plant Biol. 2000 Abstract 403: p. 94.

    Google Scholar 

  • Mehra R.K., Winge D.R. 1988. Cu(I) binding to the Schizosaccharomyces pombe γ-glutamyl peptides varying in chain lengths.-Arch. Biochem. Biophys. 265: 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Mehra R.K., Tarbet E.B., Gray W.R., Winge D.R. 1988. Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata.-Proc. Natl. Acad. Sci. USA 85: 8815–8819.

    PubMed  CAS  Google Scholar 

  • Mehra R.J., Mulchandani P. 1995. Glutathione-mediated transfer of Cu(I) into phytochelatins.-Biochem. J. 307: 697–705.

    PubMed  CAS  Google Scholar 

  • Mehra R.J., Kodati V.R., Abdullah R. 1995. Chain length-dependent Pb(II)-coordination in phytochelatins.-Biochem. Biophys. Res. Comm. 215: 730–736.

    Article  PubMed  CAS  Google Scholar 

  • Mehra R.J., Miclat J., Kodati V.R., Abdullah R., Hunter T.C., Mulchandani P. 1996. Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins.-Biochem. J. 314: 73–82.

    PubMed  CAS  Google Scholar 

  • Mendum M.L., Gupta S.C., Goldsbrough P.B. 1990. Effect of glutathione on phytochelatin synthesis in tomato cells.-Plant Physiol. 93: 484–488.

    CAS  PubMed  Google Scholar 

  • Meuwly P., Rauser W.E. 1992. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium Adaptation and developmental cost.-Plant Physiol. 99: 8–15.

    CAS  PubMed  Google Scholar 

  • Meuwly P., Thibault P., Rauser W.E. 1993. γ-Glutamylcysteinylglutamic acid-a new homologue of glutathione in maize seedlings exposed to cadmium.-FEBS Lett. 336: 472–476.

    Article  PubMed  CAS  Google Scholar 

  • Meuwly P., Thibault P., Schwan A.L., Rauser W.E. 1995. Three families of thiol peptides are induced in maize.-Plant J. 7: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Murasugi A., Wada C., Hayashi T. 1981. Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe.-J. Biochem. 90: 1561–1564.

    PubMed  CAS  Google Scholar 

  • Murasugi A., Wada C., Hayashi T. 1983. Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast.-J. Biochem. 93: 661–664.

    PubMed  CAS  Google Scholar 

  • Murphy A.S., Taiz L. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance.-Plant Physiol. 109: 945–954.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh N., Hayashi Y. 1988. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small Cd-binding peptides.-Biochem. Biophys. Res. Comm. 151: 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Mutoh N., Hayashi Y. 1991. Sulfur-containing cadystin-cadmium complexes.-Methods Enzymol. 205: 341–347.

    PubMed  CAS  Google Scholar 

  • Nakazawa R., Takenaga H. 1998. Interactions between cadmium and several heavy metals in the activation of the catalytic activity of phytochelatin synthase.-Soil Sci. Plant Nutr. 44: 265–268.

    CAS  Google Scholar 

  • Nieoboer E., Richardson D.H.S. 1980. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions.-Environ. Pollut. Ser. B 1: 3–26.

    Google Scholar 

  • Ortiz D.F., Kreppel L., Speiser D.M., Scheel G., McDonald G., Ow D.W. 1992. Heavy metal tolerance in fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.-EMBO J. 11: 3491–3499.

    PubMed  CAS  Google Scholar 

  • Ortiz D.F., Ruscitti T., McCue K.F., Ow D.W. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein.-J. Biol. Chem. 279: 4721–4728.

    Google Scholar 

  • Pickering I.J., Prince R.C., George G.N., Rauser W.E., Wickramasinghe W.A., Watson A.A., Dameron C.T., Dance I.G., Fairlie D.P., Salt D.E. 1999. X-ray absorption spectroscopy of cadmium phytochelatin and model systems.-Biochim. Biophys. Acta 1429: 351–364.

    PubMed  CAS  Google Scholar 

  • Prasad M.N.V. 1995. Cadmium toxicity and tolerance in vascular plants.-Environ. Exp. Bot. 35: 525–545.

    Article  CAS  Google Scholar 

  • Rauser W.E., Hartmann H.-J., Weser U. 1983. Cadmium-thiolate protein from the grass Agrostis gigantea.-FEBS Lett. 164: 102–104.

    Article  CAS  Google Scholar 

  • Rauser W.E. 1990. Phytochelatins.-Annu. Rev. Biochem. 59: 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Rauser W.E. 1991. Cadmium-binding peptides from plants.-Methods Enzymol 205: 319–333.

    PubMed  CAS  Google Scholar 

  • Rauser W.E., Meuwly P. 1995. Retention of cadmium in roots of maize seedlings role of complexation by phytochelatins and related thiol peptides.-Plant Physiol. 109: 195–202.

    PubMed  CAS  Google Scholar 

  • Rauser W.E. 1995. Phytochelatins and related peptides structure, biosynthesis, and function.-Plant Physiol. 109: 1141–1149.

    PubMed  CAS  Google Scholar 

  • Rauser W.E. 2000. Roots of maize seedlings retain most of their cadmium in two complexes.-J. Plant Physiol. 156: 545–551.

    CAS  Google Scholar 

  • Reese R.N., White C.A., Winge D.R. 1992. Cadmium-sulfide crystallites in Cd-(γEC) n G peptide complexes from tomato.-Plant Physiol. 98: 225–229.

    CAS  PubMed  Google Scholar 

  • Rennenberg H., Will B. 2000. Phytochelatin production and cadmium accumulation in transgenie poplar (Populus tremula x P. alba).-In: Brunold C., Rennenberg H., De Kok L.J., Stulen I., Davidian J.C. (Eds.), Sulfur nutrition and sulfur assimilation in higher plants, pp. 393–398.-Paul Haupt Publishers, Berne.

    Google Scholar 

  • Rijstenbil J.W., Wijnholds J.A. 1996. HPLC analysis of nonprotein thiols in planktonic diatoms: pool size, redox state and response to copper and cadmium exposure.-Marine Biol. 127: 45–54.

    Article  CAS  Google Scholar 

  • Robinson N. J., Tommey A.M., Kuske C., Jackson PJ. 1993. Plant metallothioneins.-Biochem. J. 295: 1–10.

    PubMed  CAS  Google Scholar 

  • Rüegsegger A., Brunold C. 1992. Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings.-Plant Physiol. 99: 428–433.

    PubMed  Google Scholar 

  • Rüegsegger A., Brunold C. 1993. Localization of y-glutamylcysteine synthetase and glutathione synthetase activity in maize seedlings.-Plant Physiol. 101: 561–566.

    PubMed  Google Scholar 

  • Salt D.E., Wagner G.J. 1993. Cadmium transport across tonoplast vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity.-J. Biol. Chem. 268: 12297–12302.

    PubMed  CAS  Google Scholar 

  • Salt D.E., Rauser W.E. 1995. MgATP-dependent transport of phytochelatin across the tonoplast of oat roots.-Plant Physiol. 107: 1293–1301.

    PubMed  CAS  Google Scholar 

  • Salt D.E., Smith R.D., Raskin R. 1998. Phytoremediation.-Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643–668.

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa T., Okuyama T., Teller D.C. 1982. Prediction of peptide retention times in reversed-phase high-performance liquid chromatography during linear gradient elution.-J. Chromatog. 240: 329–340.

    CAS  Google Scholar 

  • Scheller H.V., Huang B., Hatch E., Goldsbrough P.B. 1987. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells.-Plant Physiol. 85: 1031–1035.

    Article  CAS  PubMed  Google Scholar 

  • Speiser D.M., Abrahamson S.L., Banuelos G., Ow D.W. 1992. Brassica juncea produces a phytochelatin-cadmium-sulfide complex.-Plant Physiol. 99: 817–821.

    CAS  PubMed  Google Scholar 

  • Steffens J.C., Hunt D.F., Williams B.G. 1986. Accumulation of non-protein metal-binding polypeptides (γ-glutamyl-cysteinyl) n -glycine in selected cadmium-resistant tomato cells.-J. Biol. Chem. 261: 13879–13882.

    PubMed  CAS  Google Scholar 

  • Steffens J.C. 1990. The heavy metal-binding peptides of plants.-Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 553–575.

    CAS  Google Scholar 

  • Strasdeit H., Duhme A.-K., Kneer R., Zenk M.H., Hermes C., Nolting H.-F. 1991. Evidence for discrete Cd(SCys) 4 units in cadmium phytochelatin complexes from EXAFS spectroscopy.-J. Chem. Soc. Chem Comm. 16: 1129–1130.

    Google Scholar 

  • Thumann J., Grill E., Winnacker E.-L., Zenk M.H. 1991. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes.-FEBS Lett. 284: 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Tukendorf A., Rauser W.E. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium.-Plant Sci. 70: 155–166.

    Article  CAS  Google Scholar 

  • Vatamaniuk O.K., Mari S., Lu Y.-P., Rea P.A. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution.-Proc. Natl. Acad. Sci. 96: 7110–7115.

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk O.K., Mari S., Lu Y.-P., Rea P.A. 2000. Heavy metal ions are not essential for phytochelatin (PC) synthesis by PC synthase.-Amer. Soc. Plant Physiol. Plant Biol. 2000 Abstract 401: p. 93.

    Google Scholar 

  • Wagner G. J. 1993. Accumulation of cadmium in crop plants and its consequences to human health.-Adv. Agron. 51: 173–212.

    CAS  Google Scholar 

  • Vogeli-Lange R., Wagner G.J. 1990. Subcellular localization of cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides.-PlantPhysiol. 92: 1086–1093.

    CAS  Google Scholar 

  • Zenk M.H. 1996. Heavy metal detoxification in higher plants-a review.-Gene 179: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y.L., Pilon-Smits E.A.H., Tarun A.S., Weber S.U., Jouanin L., Terry N. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase.-Plant Physiol. 121: 1169–1177.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rauser, W.E. (2001). The Role of Glutathione in Plant Reaction and Adaptation to Excess Metals. In: Grill, D., Tausz, M., De Kok, L.J. (eds) Significance of Glutathione to Plant Adaptation to the Environment. Plant Ecophysiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47644-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47644-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0178-9

  • Online ISBN: 978-0-306-47644-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics