Skip to main content

Aspects of Glutathione in the Interaction Between Plants and Animals

  • Chapter
  • 264 Accesses

Part of the book series: Plant Ecophysiology ((KLEC,volume 2))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balabaskaran S., Chuen S.S., Muniandy S. 1989. Glutathione S-transferase from the diamond back moth (Plutella xylostella Linnaeus).-Insect Biochem. 19: 435–443.

    CAS  Google Scholar 

  • Capua S., Cohen E., Gerson U. 1991. Induction of aldrin epoxidation and glutathione S-tranferase in the mite Rhizoglyphus robini.-Entomol. Exp. Appl. 59: 43–50.

    Article  CAS  Google Scholar 

  • Chiang F.M., Sun C. N. 1993. Glutathione transferase isoenzymes of diamond back moth larvae and their role in the degradation of some organophosphorus insecticides.-Pestic. Biochem. Physiol. 45: 7–14.

    Article  CAS  Google Scholar 

  • Cochrane B.J., Morrissey J.J., LeBlanc G.A. 1987. The genetics of xenobiotic metabolism in Drosophila-IV Purification and characterization of the majot glutathione S-transferase.-Insect Biochem. 17: 731–738.

    CAS  Google Scholar 

  • Datta S., Banerjee P. 1988. Ovicidal and isect sterilization affect of ascorbic acid, glutathione oubain and thiourea.-Ann. Entomol. 6: 49–56.

    Google Scholar 

  • Davidian J.C. 1999. Sulphur sinks in crop plants. Fundamental, agronomical and environmental aspects of sulfur nutrition and assimilation in plants.-Proc. of COST action 829, Meeting of Working group I and III in Napoli, p. 8.

    Google Scholar 

  • Egaas E., Svendsen N.O., Kobro S., Skaare J.U. 1992. Glutathione S-transferases in endosulfan treated red sword grass moth (Xylena vetusta Hb.) and hebrew character moth (Orthosia gothica L.) reared on leaves from apple (Malus domestica cult.) or willow (Salix caprea L.).-Comp. Biochem. Physiol. 101C: 143–150.

    CAS  Google Scholar 

  • El-Zahaby H.M., Gullner G., Kiraly Z. 1995. Effects of powdery mildew infection of barley on the ascorbate glutathione cycle and other antioxidants in different host-pathogen interactions.-Phytopathol. 85: 1225–1230.

    CAS  Google Scholar 

  • Foyer Ch., Noctor G., Pastori G. 2000. Glutathione and glutathione reductase.-Proc. of COST action 829, Meetings of working groups II and IV in Lisbon, p.28

    Google Scholar 

  • Gould F., Hodgson E. 1980. Mixed function oxidase and glutathione transferase activity in last instar Heliothis virescens larvae.-Pestic. Biochem. Physiol. 13: 34–40.

    Article  CAS  Google Scholar 

  • Grill E., Winnacker, E.L., Zenk M.M. 1986. Homo-phytochelatins are heavy metal binding peptides of homoglutathione containing Fabales.-FEBS Lett. 205: 47–50.

    Article  CAS  Google Scholar 

  • Grill E., Loffler S., Winnacker E.L., Zenk M.M. 1989. Phytochelatins, the heavymetal binding peptides of plants are synthesized from glutathione by a specific gamma lutamyl cysteine dipeptidyl transpeptidase.-Proc. Natl. Acad. Sci. USA 86: 6838–6842.

    CAS  PubMed  Google Scholar 

  • Gullner G., Fodor J., Kiraly L. 1995a. Induction of glutathione S-transferase activity in tobacco by tobacco necrosis virus infection and by salicylic acid.-Pest. Sci. 45: 290–291.

    CAS  Google Scholar 

  • Gullner G., Koemives T., Gaborjanyi R. 1995b. Differential alterations of glutatione S-transferase enzyme activities in three Sorghum varieties following viral infection.-Z. Naturforsch. 50C: 459–460.

    Google Scholar 

  • Gunderson C., Brattisten L., Fleming J. 1986. Microsomal oxidase and glutathione tranferase as factors influencing the effects of pulegone in southern and fall armyworm larvae.-Pestic. Biochem. Physiol. 26: 238–249.

    Article  CAS  Google Scholar 

  • Haneklaus S., Hoppe L., Bahadir M., Schnug E. 1997. Sulphur nutrition and alliin concentration in Allium species.-In: Cram W. J. et al. (Eds.), Sulphur metabolism in higher plants, pp. 331–334.-Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Hughes P.R., Weinstein L.H., Wettlaufer S.H., Chiment J.J., Doss G.J., Culliney T.W., Gutenmann W.H., Bache C.A., Lisk D.J. 1987. Effect of fertilization with municipal sludge on the glutathione, polyamine and cadmium content of cole crops and associated loopers (Trochoplusia ni).-J. Agric. Food Chem. 35: 50–54.

    Article  CAS  Google Scholar 

  • Hughes P.R., Voland M.L. 1988. Increase in feeding stimulants as the primary mechanism by which SO 2 enhances performance of Mexican bean beetle on soybe.-Entomol. Exp. Appl. 48: 257–262.

    Article  CAS  Google Scholar 

  • Kirby L.M., Young R.J., Ottea J.A. 1994. Mixed function oxidase and glutathione S-transferase activities from field collected larval and adult tobacco budwurms, Heliothis virescens (F).-Pestic. Biochem. Physiol. 49: 24–36.

    Article  CAS  Google Scholar 

  • Ku C.C., Chang F.M., Hsin C.Y., Yao Y.E., Sun C.N. 1994. Glutathione transferase isoenzymes involved in insecticide resistance of diamond back moth larvae.-Pestic. Biochem. Physiol. 50: 191–197.

    Article  CAS  Google Scholar 

  • Lee K. 1991. Glutathione S-transferase activities in phytophagous insects; induction and inhibition by plant phototoxins and phenols.-Insect Biochem. 21: 353–361.

    CAS  Google Scholar 

  • Lesyczynski B., Dixon A.F.G. 1992. Resistance of cereals to aphids: the interaction between hydroxamic ascids and glutathione S-transferases in the grain aphid Sitobion avenae (F.) (Hom., Aphididae).-J. Appl. Entomol. 113: 61–67.

    Google Scholar 

  • Lesyczynski B., Matok M., Dixon A.F.G. 1994. Detoxification of cereal plant allelochemicals by aphids: activity and molecular weights of glutathione S-transferase in three species of cereal aphids.-J. Chem. Ecol. 20: 387–394.

    Google Scholar 

  • May M.J., Hammond-Kosack K.E., Jones J.D.G. 1996a. Involvement of reactive oxygen species, glutathione metabolism and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race specific elicitors of Cladosporium fulvum.-Plant Physiol. 110: 1367–1379.

    PubMed  CAS  Google Scholar 

  • May M.J., Parker J.E., Daniels M.J., Leaver C.J., Cobbett C.S. 1996b. An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens.-Mol. Plant-Microbe Interact. 9: 349–356.

    CAS  Google Scholar 

  • Miles P.W., Oertli J.J. 1993. The significance of antioxidants in the aphid-plant interaction: the redox hypothesis.-Entomol. Exp. Appl. 67: 275–283.

    CAS  Google Scholar 

  • Nomeir A.A., Mahran A.A., Mustafa F.I., Kassem S.M.I. 1987. Mixed function oxidase and glutathione S-transferase activities and their relationship to organophosphorous insecticide resistance in the Egyptian cotton leafworm.-Alex. J. Agric. Res. 32: 377–393.

    Google Scholar 

  • Owusu E.O., Korrike M. 1996. Some properties of 1-chloro-2,4-dinitorchlorbenzene linked glutathione S-transferase in dichlorvos resistant and susceptible strains of cotton aphid (Homoptera: Aphididae).-J. Agric. Sci., Cambridge 127: 469–473.

    Article  CAS  Google Scholar 

  • Reidy G.F., Visetson S., Murray M. 1990. Increased glutathione S-transferase activity and glutathione content in an insecticide resistant strain of Tribolium castaneum (Herbst).-Pestic. Biochem. Physiol. 36: 269–276.

    Article  CAS  Google Scholar 

  • Rennenberg H., Strohm M., Will B., Hartmann T. 2000. The significance of glutathione for the compensation of oxidative stress mediated by ozone pollution.-Proc. of COST action 829, Meetings of working groups II and IV in Lisbon, p. 33.

    Google Scholar 

  • Rose R.L., Sparks T.C., Smith C.M. 1989. The influence of resistant soybean (PI 227687) foliage and coumestrol on the metabolism of xenobiotics by the soybean looper Pseudoplusia includens (Walker).-Pestic. Biochem. Physiol. 34: 17–26.

    Article  CAS  Google Scholar 

  • Schnug E. 1988. Quantitative und qualitative Aspekte der Diagnose und Therapie der Schwe-felversorgung von Raps (Brassica napus L.) unter besonderer Beruecksichtigung glucosinolatarmer Sorten;-Habilitationsschrift (Dsc thesis) Agrarw. Fakultaet der Christian-Albrechts-Universitaet zu Kiel, Dezember 1988.

    Google Scholar 

  • Schnug E. 1990. Glucosinolates-fundamental, environmental and agricultural aspects.-In: Rennenberg H. et al. (Eds.), Sulfur nutrition and sulfur assimilation in higher plants, pp. 97–106.-Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Schnug E., Ceynowa J. 1990. Crop protection problems for double low rape associated with decreased disease resistance and increased pest damage.-Proc. Conf. On Crop Protection in Northern Britain, pp. 275–282. Dundee.

    Google Scholar 

  • Schnug E. 1993. Physiological functions and environmental relevance of sulfur containing secondary metabolite.-In: De Kok L.J. et al. (Eds.), Sulfur nutrition and sulfur assimilation in higher plants, pp. 179–190.-Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Schnug E., Haneklaus S. 1995. Sulphur deficiency in oilseed rape flowers-Symptomatology, biochemistry and ecological impacts.-Proc. Ninth Intern. Rapeseed Congress, pp. 296–298.-Cambridge, UK.

    Google Scholar 

  • Schnug E., Haneklaus S., Borchers A., Polle A. 1995. Relations between sulphur supply and glutathione and ascorbate concentrations in Brassica napus.-Z. Pflanzenern. Bodenk. 158: 67–69.

    CAS  Google Scholar 

  • Schnug E. 1997. Significance of sulphur for the quality of domesticated plants.-In: Cram W.J. et al. (Eds.), Sulphur metabolism in higher plants, pp. 109–130.-Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Shivanandappa T., Rajendran S. 1987. Induction of gluthathione S-transferase by fumigants in larvae on the khapra beetle Trogoderma granarium (E.).-Pestic. Biochem. Physiol. 28: 121–126.

    Article  CAS  Google Scholar 

  • Sivori J.L., Casabe N., Zerba E.N., Wood E.J. 1997. Induction of glutathione activity in Triatoma infestans.-Mem.Inst. Oswaldo Cruz, Rio de Janeiro 92: 797–802.

    CAS  Google Scholar 

  • Staedler E. 1999. Secondary sulphur metabolites influencing herbivorous insect.-Sulfur nutrition and sulfur assimilation. 4th Workshop, Wengen 1999.

    Google Scholar 

  • Suckling D.M., Armstrong K.F., Khoo J.G.I. 1990. Selection with azinphosmethyl influences glutathione S-transferase activity in the light brown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae).-Pestic. Biochem. Physiol. 38: 9–17.

    Article  CAS  Google Scholar 

  • Sun C.N., Kao C.H., Chiang F.M. 1990. Role of glutathione S-transferase in organophosphorus resistance of diamondback moth larvae.-Proc. of the 3rd Intern. Conf. On Plant Protection in the Tropics, pp. 139–145.

    Google Scholar 

  • Wadleigh R.W., Yu S.J. 1987. Glutathione transferase activity of fall armyworm larvae toward alpha-beta-unsaturated carbonyl allelochemicals and its induction by allelochemicals.-Insect Biochem. 17: 759–764.

    CAS  Google Scholar 

  • Weinhold L.C., Ahmed S., Pardini R.S. 1990. Insect glutathione S-transferase: a predictor of allelochemical and oxidative stress.-Comp. Biochem. Physiol. 95B: 355–363.

    CAS  Google Scholar 

  • Yu S.J. 1982. Host plant induction of glutathione S-transferase in the fall armyworm.-Pestic. Biochem. Physiol. 18: 101–106.

    Article  CAS  Google Scholar 

  • Yu S.J. 1992. Plant allelochemical adapted glutathione transferase in Lepidoptera.-Abstr. Am. Chem. Soc. 202: 174–190.

    Google Scholar 

  • Yu S.J. 1996. Review article: insect glutathione S-transferase.-Zool. Stud. 35/1: 9–19.

    Google Scholar 

  • Zhang K., Yang E.B., Tang W.Y., Wong K.P., Mack P. 1997. Inhibition of glutathione reductase by plant polyphenols.-Biochem. Pharmacol. 54: 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  • Zhang K., Wong K.P. 1997. Glutathione conjugation of chlorambucil: measurement and modulation by plant polyphenols.-Biochem. J. 325: 417–422.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schnug, E., Sator, C. (2001). Aspects of Glutathione in the Interaction Between Plants and Animals. In: Grill, D., Tausz, M., De Kok, L.J. (eds) Significance of Glutathione to Plant Adaptation to the Environment. Plant Ecophysiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47644-4_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47644-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0178-9

  • Online ISBN: 978-0-306-47644-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics