Skip to main content

Theoretical Thermochemistry of Radicals

  • Chapter

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 22))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For recent reviews, see: Energetics of Organic Free Radicals, J. A. M. Simoes, A. Greenberg, and J. F. Liebman (eds.), Blackie Academic and Professional, London (1996).

    Google Scholar 

  2. For an overview, see: J. A. M. Simoes and M. A. V. R. Da Silva, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 1.

    Google Scholar 

  3. J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem. 98, 2744 (1994).

    Article  CAS  Google Scholar 

  4. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986); F. Jensen, Introduction to Computational Chemistry, Wiley, New York (1999).

    Google Scholar 

  5. For recent reviews, see for example: Computational Thermochemistry, K. K. Irikura and D. J. Frurip (Eds.), ACS Symposium Series, Vol. 677, American Chemical Society, Washington, DC (1998); K. K. Irikura, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 353; J. M. L. Martin, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 373; L. A. Curtiss, P. C. Redfern, and D. J. Frurip, in Reviews in Computational Chemistry, Vol. 15, K. B. Lipkowitz and D. B. Boyd (Eds.), Wiley-VCH, New York (2000), p. 147.

    Google Scholar 

  6. For a recent review of calculations on open-shell systems, see: T. Bally and W. T. Borden, in Reviews in Computational Chemistry, Vol. 13, K. B. Lipkowitz and D. B. Boyd (Eds.), Wiley-VCH, New York (1999), p. 1.

    Google Scholar 

  7. For a recent review, see: T. H. Dunning. Jr., K. A. Peterson, and D. E. Woon, in Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, H. F. Schaefer III, and P. R. Shreiner (Eds.), Wiley, Chichester (1998), p. 88.

    Google Scholar 

  8. See for example: R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989); W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996); P. Geerlings, F. De Proft, and W. Langenaeker (Eds.), Density Functional Theory: A Bridge Between Chemistry and Physics, VUB Press, Brussels (1999).

    Google Scholar 

  9. J. F. Stanton, J. Chem. Phys. 101, 371 (1994).

    CAS  Google Scholar 

  10. Several of the methods referred to in this chapter use the URCCSD(T) procedure in which a spin-unrestricted CCSD(T) calculation is performed on a high-spin RHF reference wavefunction, as implemented in the MOLPRO program.: H. J. Werner, P. J. Knowles, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schtz, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson, MOLPRO 2000.1; University of Birmingham, Birmingham, (1999).

    Google Scholar 

  11. J. A. Pople, P. M. W. Gill, and N. C. Handy, Int. J. Quant. Chem. 56, 303 (1995).

    Article  CAS  Google Scholar 

  12. Indeed, DiLabio et al. have successfully used restricted-open-shell DFT methods to obtain bond dissociation energies: G. A. DiLabio, D. A. Pratt, A. D. LoFaro, and J. S. Wright, J. Phys. Chem. A 103, 1653 (1999); D. A. Pratt, J. S. Wright, and K. U. Ingold, J. Am. Chem. Soc. 121, 4877 (1999); G. A. DiLabio and D. A. Pratt, J. Phys. Chem. A 104, 1938 (2000).

    Google Scholar 

  13. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).

    CAS  Google Scholar 

  14. J. W. Ochterski, G. A. Petersson, and J. J. A. Montgomery, J. Chem. Phys. 104, 2598 (1996).

    Article  CAS  Google Scholar 

  15. J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999); J. M. L. Martin, Chem. Phys. Lett. 310, 271 (1999).

    CAS  Google Scholar 

  16. L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).

    Article  CAS  Google Scholar 

  17. B. J. Smith and L. Radom, J. Phys. Chem. 99, 6468 (1995); L. A. Curtiss, P. C. Redfern, B. J. Smith, and L. Radom, J. Chem. Phys. 104, 5148 (1996).

    CAS  Google Scholar 

  18. L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, J. Chem. Phys. 110, 4703 (1999).

    Article  CAS  Google Scholar 

  19. J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).

    Article  CAS  Google Scholar 

  20. C. J. Parkinson, P. M. Mayer, and L. Radom, Theor. Chem. Acc. 102, 92 (1999).

    CAS  Google Scholar 

  21. D. J. Henry, C. J. Parkinson, and L. Radom, to be published.

    Google Scholar 

  22. D. J. Henry, C. J. Parkinson, P. M. Mayer, and L. Radom, J. Phys. Chem., in press.

    Google Scholar 

  23. Some of these features are also incorporated in the G2M procedures of Morokuma and co-workers: A. M. Mebel, K. Morokuma, and M. C. Lin, J. Chem. Phys. 103, 7414 (1995).

    CAS  Google Scholar 

  24. P. M. Mayer, C. J. Parkinson, D. M. Smith, and L. Radom, J. Chem. Phys. 108, 604 (1998); P. M. Mayer, C. J. Parkinson, D. M. Smith, and L. Radom, J. Chem. Phys. 108, 9598 (1998).

    CAS  Google Scholar 

  25. NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No. 9, M. W. Chase, Jr. (Ed.), (1998).

    Google Scholar 

  26. Landolt-Börnstein, New Series, Structure Data of Free Polyatomic Molecules, K. Kuchitsu (Ed.), Springer, New York (1998–9).

    Google Scholar 

  27. J. M. L. Martin, J. Chem. Phys. 100, 8186 (1994).

    CAS  Google Scholar 

  28. J. M. L. Martin, J. El-Yazal, and J-P. Franois, Mol. Phys. 86, 1437 (1995).

    CAS  Google Scholar 

  29. D. J. Tozer, N. C. Handy, R. D. Amos, J. A. Pople, R. H. Nobes, Y. Xie, and H. F. Schaefer III, Mol. Phys. 79, 777 (1993).

    CAS  Google Scholar 

  30. See for example: Y. Fan, in Encyclopedia of Computational Chemistry, P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, H. F. Schaefer III, and P. R. Shreiner (Eds.), Wiley, Chichester (1998), p. 1217; N. L. Allinger, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, Vol. 535, M. E. Minas da Piedade (Ed.), Kluwer Academic, Dordecht, The Netherlands (1999), p. 417.

    Google Scholar 

  31. See for example: A. Nicolaides, A. Rauk, M. N. Glukhovtsev, and L. Radom, J. Phys. Chem. 100, 17460 (1996).

    Article  CAS  Google Scholar 

  32. C. J. Parkinson, P. M. Mayer, and L. Radom, J. Chem. Soc., Perkin Trans. 2, 2305 (1999).

    Google Scholar 

  33. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data. Suppl. 1, 17 (1988); K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., Princeton (1979).

    Google Scholar 

  34. CRC Handbook of Chemistry and Physics, 80th Edition, D. R. Lide (Ed.), CRC Press, Boca Raton (2000); S. Dóbé, T. Bérces, T. Turányi, F. Márta, J. Grussdorf, F. Temps, and H. G. Wagner, J. Phys. Chem.100, 19864 (1996); J. A. Seetula, Phys. Chem. Chem. Phys.1, 4721 (1999); M. S. Robinson, M. L. Polak, V. M. Bierbaum, C. H. DePuy, and W. C. Lineberger, J. Am. Chem. Soc.117, 6766 (1995); P. G. Wenthold and R. R. Squires, J. Am. Chem. Soc.116, 11890 (1994); J. L. Holmes, F. P. Lossing, and P. M. Mayer, J. Am. Chem. Soc.113, 9723 (1991); R. D. Lafleur, B. Szatary, and T. Baer, J. Phys. Chem.A 104, 1450 (2000).

    Google Scholar 

  35. D. J. Henry and L. Radom, to be published.

    Google Scholar 

  36. H. Fischer and L. Radom, Angew. Chem., Int. Ed. Engl., in press.

    Google Scholar 

  37. M. W. Wong and L. Radom, J. Phys. Chem. 99, 8582 (1995); M. W. Wong and L. Radom, J. Phys. Chem. 102, 2237 (1998); D. J. Henry, M. W. Wong, and L. Radom, to be published.

    CAS  Google Scholar 

  38. T. Zytowski and H. Fischer, J. Am. Chem. Soc. 118, 437 (1996); T. Zytowski and H. Fischer, J. Am. Chem. Soc. 119, 12869 (1997).

    Article  CAS  Google Scholar 

  39. J. A. Kerr, in Free Radicals, J. Kochi (Ed.), Wiley, New York (1972), p. 1; P. M. Holt and J. A. Kerr, Int. J. Chem. Kinet. 9, 185 (1977); D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data. 21, 411 (1992); D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data. 23, 847 (1994).

    Google Scholar 

  40. See for example: J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics, Prentice Hall, New Jersey (1989).

    Google Scholar 

  41. J. Q. Wu and H. Fischer, Int. J. Chem. Kinet. 27, 167 (1995).

    Article  CAS  Google Scholar 

  42. J. Q. Wu, I. Beranek, and H. Fischer, Helv. Chim. Acta. 78, 194 (1995).

    Article  CAS  Google Scholar 

  43. F. N. Martinez, H. B. Schlegel, and M. Newcomb, J. Org. Chem. 61, 8547 (1996).

    CAS  Google Scholar 

  44. A. L. J. Beckwith and V. Bowry, J. Am. Chem. Soc. 116, 2710 (1994).

    Article  CAS  Google Scholar 

  45. D. M. Smith, A. Nicolaides, B. T. Golding, and L. Radom, J. Am. Chem. Soc. 120, 10223 (1998).

    CAS  Google Scholar 

  46. M. Newcomb and A. G. Glenn, J. Am. Chem. Soc. 111, 275 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henry, D.J., Radom, L. (2001). Theoretical Thermochemistry of Radicals. In: Cioslowski, J. (eds) Quantum-Mechanical Prediction of Thermochemical Data. Understanding Chemical Reactivity, vol 22. Springer, Dordrecht. https://doi.org/10.1007/0-306-47632-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47632-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7077-2

  • Online ISBN: 978-0-306-47632-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics