Skip to main content

Formation of Nanostructured Carbons under Hydrothermal Conditions

  • Chapter
Book cover Perspectives of Fullerene Nanotechnology

Abstract

The formation of carbon nanostructures (fullerenes, nanotubes, nanofilaments, etc.) in gaseous media and/or vacuum has been widely studied. On the other hand, their formation from liquids or high-pressure, high-temperature fluids has received limited attention. We have recently demonstrated synthesis of various carbon nanomaterials under severe hydrothermal conditions.

Multiwall open-end and closed carbon nanotubes (MWNT) with the wall thickness from five to more than 100 carbon layers were produced from polyethylene and ethylene glycol with Ni under hydrothermal conditions at 700–800 °C under 60–100 MPa. An important feature of hydrothermal nanotubes is a small wall thickness, which is about 10% of the large inner diameter of 20–800 nm. They combine a large inside diameter and a highly graphitic wall structure. The exceptional quality of the tube walls is demonstrated by the straight and perfect lattice fringing in the tube walls and also by the electron diffraction spot patterns, which are free of diffuse amorphous rings. Raman spectral evidence shows a high similarity to the spectra obtained from high-purity natural graphite. Closed nanotubes were leak-tight by virtue of holding encapsulated water at high vacuum in a transmission electron microscope (TEM). Other carbon sources, such as fullerenes, single-wall carbon nanotubes (SWNT), and amorphous carbons can produce similar MWNTs under similar hydrothermal conditions. Tubes were also synthesized without water in C-H and C-H-O systems, but these tubes had multiple internal caps while those produced with water present had very few internal obstructions and a large inside diameter. Bamboo-like filaments can be produced by decomposition of paraformaldehyde with no water added. Narrow-channel polyhedral nanotubes and other carbon nanoparticles were obtained by varying the synthesis conditions. Starting from amorphous carbon materials, we obtained hollow nanotubes with 10–50 nm outer and 2–8 nm inner diameters and aspect ratios of 20–100. Unique chain-like nanocells with graphitic walls of 30–200 nm have been prepared from amorphous carbons above 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. T. K. Baker and P. S. Harris, ‘The Formation of Filamentous Carbon’, in ‘Chemistry and Physics of Carbon’ edited by P. A. Thrower, (1978) p. 83.

    Google Scholar 

  2. T. W. Ebbesen, ‘Carbon Nanotubes: Preparation and Properties’ (CRC Press, Boca Raton, 1997).

    Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996).

    Google Scholar 

  4. P. J. F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  5. E. G. Gamaly and T. W. Ebbesen, ‘Mechanism of Carbon Nanotube Formation in the Arc Discharge’, Phys. Rev. B 52 (1995) 2083–2089.

    Article  CAS  Google Scholar 

  6. A. T. Matveev, D. Goldberg, N. P. Novikov, L. L. Klimkovich and Y. Bando, ‘Synthesis of Carbon Nanotubes Below Room Temperature’, Carbon 39 (2001) 137–158.

    Google Scholar 

  7. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, et al. ‘Storage of Hydrogen in Single-Walled Carbon Nanotubes’, Nature 386 (1997) 377.

    Article  CAS  Google Scholar 

  8. P. Calvert, ‘Potential Applications of Nanotubes’, in Carbon Nanotubes edited by T. W. Ebbesen, (CRC Press, Boca Raton, FL, 1997) pp. 277–292.

    Google Scholar 

  9. S.-I. Hirano, K. Nakamura and S. Somiya, ‘Graphitization of Carbon in the Presence of Calcium Compounds under Hydrothermal Conditions by Use of High Gas Pressure Apparatus’, in Fourth International Conference on High Pressure, Kyoto, Japan, 1974.

    Google Scholar 

  10. Y. G. Gogotsi and M. Yoshimura, ‘Formation of Carbon Films on Carbides under Hydrothermal Conditions’, Nature 367 (1994) 628–630.

    Article  CAS  Google Scholar 

  11. Y. Gogotsi, T. Kraft, K. G. Nickel, and M. E. Zvanut, ‘Hydrothermal Behavior of Diamond’, Diam. Relat. Mater. 7 (1998) 1459–1465.

    Article  CAS  Google Scholar 

  12. J. A. Libera, and Y. G. Gogotsi, ‘Hydrothermal Synthesis of Novel Carbon Filaments’, J. Am. Ceram. Soc. 82 (1999) 2942.

    Google Scholar 

  13. Y. G. Gogotsi and K. G. Nickel, ‘Formation of Filamentous Carbon from Paraformaldehyde under High Temperatures and Pressures’, Carbon 36 (1998) 937–942.

    Article  CAS  Google Scholar 

  14. Y. Gogotsi, ‘Nanostructured Carbon Coatings’, in Proceedings of the NATO ARW on Nanostructured Films and Coatings, edited by G.-M. Chow, I. A. Ovid’ko, and T. Tsakalakos (Kluwer, Dordrecht, 1999) pp. 25–40.

    Google Scholar 

  15. G. A. Jablonski, F. W. Geurts, A. J. Sacco and R. R. Biederman, ‘Carbon deposition over Fe, Ni, and Co foils from CO-H 2 -CH 4 -H 2 O, CO-CO 2 , CH 4 -H 2 , and CO-H 2 -H 2 O gas mixtures: I. Morphology’, Carbon 30 (1992) 87–98.

    CAS  Google Scholar 

  16. Y. Gogotsi, J. Libera and M. Yoshimura, ‘Hydrothermal Synthesis of Multiwall Carbon Nanotubes’, J. Mater. Res. 15 (2000) 2591–2594.

    CAS  Google Scholar 

  17. J. A. Libera and Y. Gogotsi, ‘Hydrothermal Synthesis of Graphite Tubes Using Ni Catalyst’, Carbon 39 (2001) 1307–1318.

    Article  CAS  Google Scholar 

  18. W. Suchanek, J. Libera, Y. Gogotsi and M. Yoshimura, ‘Behavior of C 60 under Hydrothermal Conditions: Amorphization and Formation of Nanotubes’, Carbon (2002) submitted.

    Google Scholar 

  19. G. Katagiri, H. Ishida and A. Ishitani, ‘Raman Spectra of Graphite Edge Planes’, Carbon 26 (1988) 565–571.

    Article  CAS  Google Scholar 

  20. Y. Gogotsi, J. A. Libera, A. Güvenç-Yazicioglu and C. M. Megaridis, ‘In-situ Multi-phase Fluid Experiments in Hydrothermal Carbon Nanotubes’, Appl. Phys. Lett. 79 (2001) 1021–1023.

    Article  CAS  Google Scholar 

  21. Y. Gogotsi, J. A. Libera, A. Güvenç-Yazicioglu and C. M. Megaridis, ‘In-situ Fluid Experiments in Carbon Nanotubes’, in Materials Research Society Meeting A7.4.1-A7.4.6 (MRS, Boston, 2001).

    Google Scholar 

  22. S. Swamy, J. Calderon-Moreno and M. Yoshimura, ‘Hydrothermal Behavior of Single Wall Carbon Nanotubes’, J. Mater. Res. (2001) in press.

    Google Scholar 

  23. Y. Gogotsi, J. A. Libera, A. F. K. v. Groos and M. Yoshimura, ‘Hydrothermal Synthesis of Carbon Nanotubes’, in Joint Sixth International Symposium on Hydrothermal Reactions (ISHR) and Fourth International Conference on Solvo-Thermal Reactions (ICSTR) (in press, Kochi, Japan, 2000).

    Google Scholar 

  24. J. M. Calderon-Moreno and M. Yoshimura, ‘Hydrothermal Processing of High-Quality Multiwall Nanotubes from Amorphous Carbon’, J. Am. Chem. Soc. 123 (2001) 741–742.

    CAS  Google Scholar 

  25. J. M. Calderon-Moreno, T. Fujino and M. Yoshimura, ‘Carbon Nanocells Grown in Hydrothermal Fluids’, Carbon 39 (2001) 618–621.

    Google Scholar 

  26. J. M. Calderon-Moreno, S. S. Swamy, T. Fujino, and M. Yoshimura, ‘Carbon Nanocells and Nanotubes Grown in Hydrothermal Fluids’, Chem. Phys. Lett. 329 (2000) 317–322.

    Google Scholar 

  27. V. Blank, G. V. Polyakov, B. A. Kalnitskiy, et al. ‘Nanocarbons Formed in a Hot Isostatic Pressure Apparatus’, Thin Solid Films 346 (1999) 86–90.

    Article  CAS  Google Scholar 

  28. Y. G. Gogotsi and K. G. Nickel, ‘Hydrothermal Synthesis of Diamond: Challenges and Opportunities’, Ceram. Eng. Sci. Proc. 18 (1997) 747–754.

    CAS  Google Scholar 

  29. N. Yamasaki, S. Kanahara, K. Matsuoka and M. Tsubouchi, ‘Formation of Fine Spherical Carbons under Hydrothermal Conditions’, Nihon Kagaku-kai Shi (11) (1981) 1828–1830.

    Google Scholar 

  30. S.-I. Hirano, M. Ozawa and M. Tobinaga, ‘Study on Process of Carbon Formation by Pressure Pyrolysis of Polystyrene’, Yogyo Kyokai Shi 94 (1986) 53–57.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gogotsi, Y., Libera, J.A., Yoshimura, M. (2002). Formation of Nanostructured Carbons under Hydrothermal Conditions. In: Ōsawa, E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/0-306-47621-5_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-47621-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7174-8

  • Online ISBN: 978-0-306-47621-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics