Skip to main content

Layout and Technology Influences on ESD Protection Circuit Design

  • Chapter
On-Chip ESD Protection for Integrated Circuits

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 663))

  • 916 Accesses

Summary

In summary, both layout design and technology evolution will strongly influence ESD protection circuit design and performance. In terms of layout, two basic considerations should be kept in mind when doing ESD protection circuit design, i.e., to ensure uniform current distribution and to make area efficient layout. Practical ESD-enhancement layout techniques include to use smoothed geometries, to set up adequate critical spacing, to properly place contacts and vias, as well as to optimise metal interconnect routing, and so on. Use of bounding pad oriented ESD protection is a very attractive solution to high-pin-count area-sensitive chips. In regarding technological impacts, every single new process techniques designed to boost transistor operation should be evaluated against its influences on ESD protection performance. Most advanced process techniques, such as, LDD and silicidation, can degrade ESD robustness dramatically. Technology scaling generally makes ESD protection circuit design more difficult. Many after-qualification fixing measures are available to recover the lose in ESD protection performance, such as LDD-blocking, silicide-blocking and ESD implant, etc, at extra costs. It is wise to consider technology-ESD co-development in early phase of new process development, where it is possible to strike a balance between regular transistor operation and ESD robustness. In near future, ESD protection for VDSM and nano-scale technologies is a challenge to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, A. Z., Feng, H. G., Gong, K., Zhan, R. Y. and Stine, J., “On-Chip ESD Protection Design for Integrated Circuits: an Overview for IC Designers”, J. Microelectronics, Elsevier Science, Vol. 32/9, August 2001, pp.733–747.

    Google Scholar 

  2. Amerasekera, A. and Duvvury, C., ESD in Silicon Integrated Circuits, John Wiley & Sons, England, 1995.

    Google Scholar 

  3. Dabral, S. and Maloney, T., Basic ESD and I/O Design, John Wiley & Sons, 1998.

    Google Scholar 

  4. Feng, H. G., “A Mixed-Mode Simulation-Design Methodology for on-Chip ESD Protection Design”, MS Thesis, Illinois Institute of Technology, May 2001.

    Google Scholar 

  5. Rountree, R. and Hutchins, C., “NMOS Protection Circuitry”, IEEE Trans. Elec. Dev., ED-32, 1985, pp.910–917.

    Article  Google Scholar 

  6. Palella, A. and Domingos, H., “A Design Methodology for ESD Protection Networks”, Proc. EOS/ESD Symp., 1985, pp.169–174.

    Google Scholar 

  7. McPhee, R., Duvvury, C., Rountree, R. and Domingos, H., “Thick Oxide ESD Performance under Process Variations”, Proc. EOS/ESD Symp., 1986, pp.173–179.

    Google Scholar 

  8. Wilson, D., Domingos, H. and Hassan, M., “Electrical Overstress in nMOS Silicided Devices”, Proc. EOS/ESD Symp., 1987, pp.265–273.

    Google Scholar 

  9. May, J. and Guravage, J., “Interpretation of EPS Induced Discoloration in ICs”, Proc. Int’l Symp. Testing Fail. Anal., 1990, pp.143–147.

    Google Scholar 

  10. Wang, A., Tsay, C. and Deane, P., “A Study of NMOS Behaviors under ESD Stress: Simulation and Characterization”, Microelectronics Reliability, 38, Elsevier Science, pp.1183–1186,1998.

    Article  Google Scholar 

  11. Duvvury, C., Rountree, R and McPhee, R., “ESD Protection: Design and Layout Issues for VLSI Circuits”, IEEE Tran. Industry Appl., Vol. 25, No. 1, January 1989, pp. 41–47.

    Article  Google Scholar 

  12. Ker, M., Wang, K, Joe, M., Chu, Y. and Wu, T, “Area-Efficient CMOS Output Buffer with Enhanced High ESD Reliability for Deep Submicron CMOS ASIC”, Proc. 8M th Annual IEEE Int’l ASIC Conf., 1995, pp. 123–126.

    Google Scholar 

  13. Baker, L., Currence, R., Law, S., Le, M., Lee, C., Lin, S. and Teene, M., “A Waffle Layout Technique Strengthens the ESD Hardness of the NMOS Output Transistor”, Proc. EOS/ESD Symp., 1989, pp.175–181.

    Google Scholar 

  14. Ker, M., Wu, C. and Wu, T., “Area-Efficient Layout Design for CMOS Output Transistors”, IEEE Trans. Elec. Dev., Vol. 44, No. 4, April 1997, pp.635–645.

    Article  Google Scholar 

  15. Wang, A. Z. and Tsay, C. H., “A Compact Square-Cell ESD Structure for BiCMOS ICs”, Proc. IEEE BCTM, 1999, pp. 46–49.

    Google Scholar 

  16. Wang, A., Tsay, C., Bielawski, J. and DeClue, L., “Design Optimization of a Practical ESD Protection Circuit by CAD: A Case Study”, Proc. IEEE Univ. Gov. Indust. Microelec. Symp., 1999, pp. 116–119.

    Google Scholar 

  17. Anderson, W., Gonzalez, M., Knecht, S. and Fowler, W., “ESD Protection under Wire Bonding Pads”, Proc. EOS/ESD Symp., 1999, pp.88–94.

    Google Scholar 

  18. Feng, H., Zhan, R., Gong, K. and Wang, A. Z., “A New Pad-Oriented Multiple-Mode ESD Protection Structure and Layout Optimisation”, IEEE Electron Device Letters, Vol. 22, No. 10, October 2001, pp.493–495.

    Article  Google Scholar 

  19. Feng, H., Zhan, R., Gong, K. and Wang, A., “A Pad-Based Low-Parasitic Multiple-Mode ESD Protection Structure for ICs”, submitted to IEEE Trans. CAS II, 2001.

    Google Scholar 

  20. Voldman, S. and Gross, V., “Scaling, Optimization and Design Considerations of Electrostatic Discharge Protection Circuits in CMOS Technology”, Proc. EOS/ESD Symp., 1993, pp.251–260.

    Google Scholar 

  21. Amerasekera, A. and Duvvury, C., “The Impact of Technology Scaling on ESD Robustness and Protection Circuit Design”, Proc. EOS/ESD Symp., 1994, pp.237–245.

    Google Scholar 

  22. Shabde, S., Simmons, G., Baluni, A. and Back, D., “Snapback Induced Gate Dielectric Breakdown in Graded Junction MOS Structures”, Proc. Int’l Relia. Phys. Symp., 1984, pp.165–168.

    Google Scholar 

  23. Daniel, S. and Krieger, G., “Process and Design Optimization for Advanced CMOS I/I ESD Protection Devices”, Proc. EOS/ESD Symp., 1990, pp. 206–213.

    Google Scholar 

  24. Amerasekera, A., McNeil, V. and Rodder, M., “Correlating Drain Junction Scaling, Salicide Thickness, and Lateral NPN Behaviour, with the ESD/EOS Performance of a 0.25μm CMOS Process”, Digest IEDM, 1996, pp.893–896.

    Google Scholar 

  25. Okushima, M., Noguchi, K., Sawahata, K., Suzuki, H., Kuroki, S., Koyama, S., Ando, K. and Ikezawa, N., “ESD Protection Scheme using CMOS Compatible Vertical Bipolar Transistor for 130nm CMOS Generation”, Digest IEDM, 2000, pp. 127–130.

    Google Scholar 

  26. Gong, K. Feng, H. G., Zhan, R. Y. and Wang, A. Z., “A Study of Parasitic Effects of ESD Protection on RF ICs”, in press, IEEE Trans. Microwave Theory and Techniques, Feb. 2002.

    Google Scholar 

  27. Chan, M., Yuen, S., Ma, Z., Hui, K., Ko, P. and Hu, C., “Comparison of ESD Protection Capability of SOI and Bulk CMOS Output Buffers”, Proc. Int’l Relia. Phys. Symp., 1994, pp. 292–298.

    Google Scholar 

  28. Voldman, S., Assaderaghi, F., Mandelman, J., Hsu, L. and Shahidi, G., “Dynamic Threshold Body-and Gate-Coupled SOI ESD Protection Networks”, J. Electrostatics, Elsevier Science, 44, 1998, pp. 239–255.

    Article  Google Scholar 

  29. Verhaege, K., Groesenken, G., Colinge, J. and Maes, H., “Double Snapback in SOI nMOSFET’s and its Application for SOI ESD Protection”, IEEE Elec. Dev. Lett., Vol. 14, No. 7, July 1993, pp. 326–328.

    Article  Google Scholar 

  30. Choi, C., Park, Y., Lee, S. and Kim, K., “Novel ESD Protection Transistor Including SiGe Buried Layer to Reduce Local Temperature Overheating”, IEEE Trans. Elec. Dev., Vol. 43, No. 3, March 1996, pp. 479–489.

    Article  Google Scholar 

  31. Feng, H. G., Gong, K. and Wang, A., “ESD Protection Design Using Copper Interconnects: More Robustness and Less Parasitics”, SRC Publication: 2000 Publications in Copper Design Challenge, Pub. P000375, 17-Mar-2000.

    Google Scholar 

  32. Chen, G., “Non-local and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles”, J. Heat Transfer, Vol. 118, pp.539–545, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wang, A.Z.H. (2002). Layout and Technology Influences on ESD Protection Circuit Design. In: On-Chip ESD Protection for Integrated Circuits. The International Series in Engineering and Computer Science, vol 663. Springer, Boston, MA. https://doi.org/10.1007/0-306-47618-5_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47618-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7647-7

  • Online ISBN: 978-0-306-47618-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics