Cyclic Voltammetry Electrode Potential Sweep Rate Electrode Reaction Potential Sweep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading Seminal

  1. 1.
    J. Heyrovsky, Chem. Listy 16:256 (1922). Foundation of polarography.Google Scholar
  2. 2.
    F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. London 120A: (1928). First transients in electrochemistry.Google Scholar
  3. 3.
    J. A. V. Butler and L. Armstrong, Trans. Faraday Soc. 29:1261 (1933). Galvanostatic transients.CrossRefGoogle Scholar
  4. 4.
    D. Ilkovič, J. Chim. Physique 35:129 (1939). First theory of polarography.Google Scholar
  5. 5.
    P. Dolin and B. Erschler, Acta Physicochem. URSS 13:747 (1940). First impedance analysis to give i0.Google Scholar
  6. 6.
    A. Hickling, Trans. Faraday Soc. 38:27 (1942). First electronic potentiostat.Google Scholar
  7. 7.
    J. E. B. Randies, Discuss. Faraday Soc. 1:11 (1947). Analysis of the impedance of the interface.Google Scholar
  8. 8.
    A. Sevčik, Coll. Czech. Chem. Comm. 13:349 (1948). First analytical theory of linear sweep voltammetry.Google Scholar
  9. 9.
    J. E. B. Randies, Trans. Faraday Soc. 44:327 (1948). Graphical solution in linear sweep voltammetry.Google Scholar
  10. 10.
    N. Tanaka and R. Tamamushi, Bull. Chem. Soc. Jpn. 22:187 (1949). Theory of polarography in the presence of interfacial control.Google Scholar
  11. 11.
    B. Breyer, F. Gutmann, and S. Hacobian, Aust. J. Sci. Res., Ser. A. 3:58, 517 (1950). Foundation of ac polarography.Google Scholar
  12. 12.
    J. O’M. Bockris and E. C. Potter, J. Electrochem. Soc. 99:169 (1952). First theory of the decay transients.Google Scholar
  13. 13.
    H. Gerischer and W. Vielstich, Z. Electrochem. 56:380 (1952). First potentiostatic transients.Google Scholar
  14. 14.
    J. E. Strassner and P. Delahay, J. Am. Chem. Soc. 74:6232 (1952). First rate constant calculated from a polarographic wave.CrossRefGoogle Scholar
  15. 15.
    F. G. Will and C. A. Knorr, Z. Elektrochem. 64:258 (1960). First analysis of O and H with potential sweep approach.Google Scholar
  16. 16.
    E. Gileadi, G. Stoner, and J. O’M. Bockris, J. Electrochem. Soc. 113:585 (1966). Calculation of errors in the determination of kinetic parameters arising from potential sweep rates that are too high.Google Scholar
  17. 17.
    E. Gileadi and S. Srinivasan, Electrochim. Acta 11:321 (1966). First quantitative analysis of potential sweeps involving adsorbed intermediates.Google Scholar


  1. 1a.
    H. Angerstein-Kozlowska, J. Klinger, and B. E. Conway, J. Electroanalyt. Chem. 75:61 (1977).Google Scholar
  2. 2a.
    D. D. MacDonald, Transient Techniques in Electrochemistry, Plenum, New York (1977).Google Scholar
  3. 3a.
    H. Angerstein-Kozlowska and B. E. Conway, J. Electroanal. Chem. 95:1 (1979).CrossRefGoogle Scholar
  4. 4a.
    B. E. Conway and H. Angerstein-Kozlowska, Acc. Chem. Res. 14:49 (1981).CrossRefGoogle Scholar
  5. 5a.
    Southampton Group, Instrumental Methods in Electrochemistry, Ch. 6, Ellis Harwood, Chichester, U. K. (1985).Google Scholar
  6. 6a.
    V. D. Parker, “Linear Sweep and Cyclic Voltammetry,” in Electrode Kinetics, Principles and Methodology, C. H. Bamford and R. G. Compton, eds., Ch. 4, p. 197, Elsevier, Amsterdam (1986).Google Scholar
  7. 7a.
    M. Sluyters-Rehbach and J. H. Sluyters, “Alternating Current and Pulse Methods,” in Electrode Kinetics, Principles and Methodology, C. H. Bamford and R. C. Compton, eds., Elsevier, Amsterdam (1986).Google Scholar
  8. 8a.
    J. Clavilier, “Characterization of Platinum at Stepped Surface,” in Electrochemical Surface Sciences, M. Soriaga, ed., Ch. 14, American Chemical Society, Washington, DC (1988).Google Scholar
  9. 9a.
    A. Wieckowski, “Electrochemistry at Well-Defined Surfaces,” in Electrochemical Surface Sciences, M. Soriaga, ed., Ch. 17, American Chemical Society, Washington, DC (1988).Google Scholar
  10. 10a.
    K. M. Radish, Q. Y. Ku, and J. E. Anderson, in Electrochemical Surface Sciences, M. Soriaga, ed., Ch. 31, American Chemical Society, Washington, DC (1988).Google Scholar
  11. 11a.
    A. Szucs, G. D. Hitchens, and J. O’M. Bockris, Bioelectrochem. Bioenergetics, 21:133 1989.CrossRefGoogle Scholar
  12. 12a.
    David K. Gosser, Cyclic Voltammetry and Reaction Mechanism (Computer Simulations), VCH Publishers, Weinheim (1993).Google Scholar
  13. 13a.
    E. Gileadi, Electrode Kinetics for Chemists, Engineers and Material Scientists, Ch. 25, VCH Publishers, Weinheim (1993).Google Scholar
  14. 14a.
    L. M. A. Brett and A. M. O. Brett, Electrochemistry, Ch. 9, p. 174, Oxford Science Publications (1993).Google Scholar
  15. 15a.
    K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science, Ch. 11, Academic Press, San Diego (1994).Google Scholar
  16. 16a.
    M. Rudolph, “Digital Simulation in Electrochemistry,” in Physical Electrochemistry, I. Rubenstein, ed., Ch. 3, Marcel Dekker, New York (1995).Google Scholar
  17. 17a.
    T. Fukuda and Akiko Aramata, Proc. Electrochem. Society 96–97:96 (1996).Google Scholar
  18. 18.
    M. Osawa, K. Ataka, and K. Yoski, Proc. Electrochem. Soc. 96–98:108 (1996).Google Scholar
  19. 19.
    A. Zoltaghari, G. Jerkiewicz, V. E. Sung, and A. Wieckowski, Proc. Electrochem. Soc. 96–98:150 (1996).Google Scholar
  20. 20.
    J. Skin and C. Korzeniewski, Electrochem. Soc. Proc. 96–98:291 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations