Advertisement

Keywords

Scanning Tunneling Microscope Screw Dislocation Electrode Reaction Hydrogen Evolution Reaction Rotate Disk Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

Seminal

  1. 1.
    W. Nernst, Z. Physikal. Chem. 47:52 (1904).Google Scholar
  2. 2.
    J. Tafel, Z. Physikal. Chem. (Leipzig) 50:641 (1905).Google Scholar
  3. 3.
    J. A. V. Butler, Trans. Faraday Soc. 19:729 (1924).Google Scholar
  4. 4.
    T. Erdey Gruz and M. Volmer, Z. Physikal Chemie 203:250 (1930).Google Scholar

Reviews

  1. 1a.
    J. O’M. Bockris, Chem. Rev. 3:525 (1948) (hydrogen oriented); Modem Aspects of Electrochemistry, Vol. 1, Ch. 4, Butterworths, London (1954). First comprehensive article on electrode kinetics as such.Google Scholar
  2. 2a.
    K. J. Vetter, Electrode Kinetics, Springer-Verlag, Berlin (1961). First textbook on electrode kinetics.Google Scholar
  3. 3a.
    B. E. Conway, Theory of Principles of Electrode Processes, Ronald Press, New York (1964).Google Scholar

Further Reading

  1. 1b.
    A. N. Frumkin, Z. Physikal Chem. 164A:121 (1933). Effect of the double-layer structure on the concentration dependence of a reaction rate.Google Scholar
  2. 2b.
    J. O’M. Bockris, I. A. Ammar, and A. K. M. S. Huq, J. Phys. Chem. 61:879 (1957). Effect of the double-layer structure on the potential dependence of the electrochemical reaction rate.Google Scholar

Historical

  1. 1c.
    J. O’M. Bockris, “The Life of A. N. Frumkin,” Proc. RoyAustr. Chem. Inst. 19–21 (1971).Google Scholar

Modern

  1. 1d.
    C. M. A. Brett and A. M. O. Brett, Electrochemistry, Oxford University Press, Oxford (1993).Google Scholar
  2. 2d.
    C. H. Hamman, A. Hamnett, and W. Vielstich, Electrochemistry, Wiley-VCH, Weinheim (1995).Google Scholar

Elementary Phenomenological Electrode Kinetics

  1. 1e.
    J. O’M. Bockris, J. Chem. Ed. 48:352 (1971).Google Scholar
  2. 2e.
    E. Gileadi, Electrode Kinetics for Chemists, Engineers and Material Scientists, VCH Publisher, Weinheim (1993).Google Scholar
  3. 3e.
    W. Schmickler, Interfacial Electrochemistry, Ch. V, Oxford University Press, Oxford (1995).Google Scholar

Further Reading Seminal

  1. 1f.
    H. Brattain and G. Garrett, Ann. N.Y. Acad. Sci. 58:951 (1954). First treatment (thermodynamic) of semiconductors as electrodes.Google Scholar
  2. 2f.
    M. Green, “Electrochemistry of the Semiconductor Solution Interface,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, ed., Vol. II, Butterworths, London (1959). First kinetic treatment of electron transfer at semiconductor/solution interfaces.Google Scholar
  3. 3f.
    H. Gerischer, “Semiconductor Electrode Reactions,” in Recent Advances in Electrochemistry, P. Delahay, ed., Interscience, New York (1961). Electrode kinetics involving conductivity and valence bands.Google Scholar
  4. 4f.
    J. F. Dewald, “Semiconductor Electrodes,” in Semiconductors, H. B. Hannay, ed., Reinhold, New York (1964). First diagrammatic presentation of electron exchange between redox species in solution and semiconductor bands.Google Scholar

Modern

  1. 1g.
    F. Gutmann, H. Keyzer, and L. E. Lyons, Organic Semiconductors, Part B, Malabar, FL (1983).Google Scholar
  2. 2g.
    G. DiGiolomo, Electrochemical Migration, J. McHardy and F. Ludwig, eds., Noyes, Park Ridge, NJ (1992).Google Scholar
  3. 3g.
    K. Uosaki and M. Koinuma, “STM and Semiconductor-Solution Interfaces,” Faraday Disc. 94:361 (1992).CrossRefGoogle Scholar
  4. 4g.
    R. DeMattel and R. S. Feigelson, “Electrochemical Deposition of Semiconductors,” in Electrochemistry of Semiconductors, J. McHardy and F. Ludwig, eds., Noyes, Park Ridge, NJ (1992).Google Scholar
  5. 5g.
    P. Allongue, in Advances in Electrochemical Science and Engineering, H. Gerischer and C. Tobias, eds., VCH Publishers, Weinheim (1995). STM on semiconductor electrodes.Google Scholar
  6. 6g.
    W. Schmickler, Interfacial Electrochemistry, pp. 81–94, Oxford University Press, Oxford (1996).Google Scholar
  7. 7g.
    W. Jaegerman, “Semiconductor Electrolyte Interface: A Surface Science Approach,” in Modem Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 30, Plenum, New York (1996).Google Scholar
  8. 8g.
    C. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, pp. 207–208, VCH-Wiley, New York (1998).Google Scholar

Further Reading Seminal

  1. 1h.
    F. Haber, Z. Elektrochemie 7: 13 (1900). Luggin capillary as a means to avoid IR errors.Google Scholar
  2. 2h.
    W. Nernst, Z. Elektrochemie 7: 253 (1900). Hydrogen reference electrode.Google Scholar
  3. 3h.
    F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. 120A: 59, 80 (1928). First measurements of “real” areas.Google Scholar
  4. 4h.
    S. Levina and W. Silberfarb, Acta Physicochim. USSR 4: 282 (1936). First cells aimed at steady-state pure solution measurements.Google Scholar
  5. 5h.
    S. Levina and W. Sarinsky, Acta Physicochim. USSR 6: 491 (1937). Clean solutions, preelectrolysis.Google Scholar
  6. 6h.
    A. Hickling, Trans. Faraday Soc. 33: 1540 (1937). The first paper on electronic potentiostats.CrossRefGoogle Scholar
  7. 7h.
    F. P. Bowden and J. Grew, Discuss. Faraday Soc. 1: 91(1947). Measurements at very low current densities, 10 nA cm −2.Google Scholar
  8. 8h.
    J. O’M. Bockris and B. E. Conway, J. Sci. Instrum. 19A: 23 (1948). Preparation of electrodes in a hydrogen flame.Google Scholar
  9. 9h.
    J. O’M. Bockris and B. E. Conway, Trans. Faraday Soc. 45: 989 (1949). Effects of trace impurities in solution.Google Scholar
  10. 10h.
    A. M. Azzam, J. O’M. Bockris, B. E. Conway, and H. Rosenberg, Trans. Faraday Soc. 46:918 (1950). Technique of steady-state electrode kinetics on solid electrodes involving intermediates.CrossRefGoogle Scholar
  11. 11h.
    C. Wagner, J. Electrochem. Soc. 98: 116 (1951). Resistance and current lines in solution.Google Scholar
  12. 12h.
    S. Schuldiner, J. Electrochem. Soc.’ 99: 488 (1952). Clean cells made of Teflon.Google Scholar
  13. 13h.
    J. Barton and J. O’M. Bockris, Proc. Roy. Soc. London A268: 485 (1962). Spherical diffusion control experimentally established.Google Scholar
  14. 14h.
    E. Schmidt and H. R. Gygax, Chimia 16:105 (1962). The first, but primitive, thin-layer cell.Google Scholar
  15. 15h.
    C. C. Christensen and F. C. Anson, Anal. Chem. 35: 205 (1963). The first real thin-layer cell.CrossRefGoogle Scholar
  16. 16h.
    H. Angerstein-Kozlowska, in Comprehensive Treatise of Electrochemistry, E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, eds., Vol. 9, p. 15, Plenum, New York (1985).Google Scholar

Reviews

  1. 1i.
    R. Varma and J. R. Selman, Techniques for Electrodes, Wiley, New York (1991).Google Scholar
  2. 2i.
    D. Genders and N. Weinberg, Electrochemistry for a Cleaner Environment, Electrosynthesis Co., Buffalo, NY (1992).Google Scholar
  3. 3i.
    B. R. Scharifker, in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 5, p. 467, Plenum, New York (1992). Microelectrodes.Google Scholar
  4. 4i.
    R. J. Gale, in Electrochemistry, 1992–95. Royal Society of Chemistry, London (1996). Instrumentation.Google Scholar
  5. 5i.
    J. Bemhofer, Pract. Spectroscopy 15: 233 (1993). Cells for optical measurements.Google Scholar
  6. 6i.
    P. A. Christensen and A. Hamnett, Techniques and Mechanisms of Electrochemistry, Blackie Academic and Professional, London (1994).Google Scholar
  7. 7i.
    R. C. Salvarazza and A. J. Arvia, in Modem Aspects of Electrochemistry, B. E. Conway, J. O’M. Bockris and R. E. White, eds., Vol. 28, Ch. 5, Plenum, New York (1996). Roughness measurement.Google Scholar
  8. 8i.
    M. E. Clark, J. L. Ingram, E. E. Blakely, and W. T. Bowes, J. Electroanal. Chem. 385: 105 (1995). Miniature cells for Tafel measurements.CrossRefGoogle Scholar
  9. 9i.
    Z. Li and X. Lin, J. Electroanal. Chem. 386: 83 (1995). Cells for infrared measurements.CrossRefGoogle Scholar
  10. 10i.
    R. T. Baker, I. S. Metalfe, and P. H. Middleton, J. Catal. 155: 21 (1995). Cells coupled to mass spectrographs.CrossRefGoogle Scholar
  11. 11i.
    Y. Iwasaki and M. Moritz, Curr. Sep. 14: 2 (1995). Arrays of microelectrodes.Google Scholar

Further Reading Seminal

  1. 1j.
    J. Tafel, Z. Physikal. Chem. 50:641 (1905). First experiment indicating that current density depends on the exponential value of the overpotential.Google Scholar
  2. 2j.
    F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. London 120A: 59 (1928). First real area measurements, first transients.Google Scholar
  3. 3j.
    P. Bakendale, Discuss. Faraday Soc. 1: 46 (1947). Rational interpretation of meaning of temperature coefficients.Google Scholar
  4. 4j.
    M. Temkin, Zhur. Fiz. Khim. 15: 296 (1941). Analysis of heats of activation.Google Scholar
  5. 5j.
    G. J. Hills and D. R. Kinnibrugh, J. Electrochem. Soc. 113:1111 (1960). Rate as a function of pressure.Google Scholar
  6. 6j.
    Y. R. Ivanov and V. C. Levich, Dokl. Akad. Nauk., SSSR 126: 1029 (1959). First theory, rotating disk with ring.Google Scholar
  7. 7j.
    A. N. Frumkin and L. N. Nekrassov, Dokl. Akad. Nauk., SSSR 126:115 (1959). First use, rotating disk with ring.Google Scholar
  8. 8j.
    P. Dolin and B. Erschler, Acta Phys. Chem. 13: 747 (1940). First use, equivalent circuit, in electrode kinetics.Google Scholar
  9. 9j.
    J. C. B. Randies, Discuss. Faraday Soc. 1:11 (1947). A simple derivation of the exchange current density from impedance measurements.Google Scholar
  10. 10j.
    M. Neugebauer, G. Nauer, N. Brinda-Knopik, and G. Gidaly, J. Electroanal. Chem. 122: 237 (1981). First Fourier transform infrared spectra on electrodes.CrossRefGoogle Scholar
  11. 11j.
    A. K. N. Reddy, M. A. U. Devanathan, and J. O’M. Bockris, J. Electroanal. Chem. 6: 61 (1963). First use of ellipsometry to follow a dynamic electrode process.Google Scholar
  12. 12j.
    W. K. Paik and J. O’M. Bockris, Surf. Sci. 18:61 (1971). First exact ellipsometric solutions in one measurement.Google Scholar
  13. 13j.
    S. G. Christov, Electrochim. Acta 4: 306 (1961). Separation factors analysis in electrode kinetics.Google Scholar
  14. 14j.
    J. O’M. Bockris, D. G. M. Matthews, and S. Srinivasan, Discuss. Faraday Soc. 39: 329 (1965). Use of quantum theory-derived values of separation factors in mechanism analysis for hydrogen evolution.Google Scholar
  15. 15j.
    R. Sonnenfeld and P. K. Hansma, Science 232: 211 (1986). First use of STM in electrochemistry.Google Scholar
  16. 16j.
    M. Szklarczyk and J. O’M. Bockris, J. Electrochem. Soc. 137: 452 (1990). First STM report of distinguishability of atoms on surface in contact with liquid.Google Scholar
  17. 17j.
    S. W. Feldburg, in Analytical Chemistry, A. J. Bard, ed., Vol. 3, p. 199; (1969). First application of explicit finite-difference method to electrochemistry.Google Scholar
  18. 18j.
    M. Szklarczyk, O. Velev, and J. O’M. Bockris, J. Electrochem. Soc. 136: 2433 (1989). First atomic resolution in in situ electrochemistry.Google Scholar

Papers

  1. 1k.
    Z. Nagy, “D. C. Relaxation Techniques in Electrode Kinetics,” in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 137, Plenum, New York (1990).Google Scholar
  2. 2k.
    R. Sonnenfeld, J. Schnei, and P. Hansma, “Scanning Tunneling Spectroscopy—A Natural for Electrochemistry,” in Modern Aspects of Electrochemistry, R. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 1, Plenum, New York (1990).Google Scholar
  3. 3k.
    H. D. Abruna, “X-rays as Probes of the Electrochemical Interface,” in ModernAspects of Electrochemistry, J. O’M. Bockris, R. E. White, and B. E. Conway, eds., Vol. 20, p. 205, Plenum, New York (1989).Google Scholar
  4. 4k.
    R. Adzic, “Reaction Kinetics on Single Crystals,” in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 163, Plenum, New York (1990).Google Scholar
  5. 5k.
    T. Z. Fahidy and Z. H. Gu, “Dynamics of Electrode Processes,” in Modern Aspects of Electrochemistry, R. E. White, J. O’M. Bockris, and B. E. Conway, eds., Vol. 27, p. 383, Plenum, New York (1995).Google Scholar
  6. 6k.
    D. B. Sepa, “Energies of Activation,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 29, p. 1, Plenum, New York (1997).Google Scholar
  7. 7k.
    V. Jovancicevic and J. O’M. Bockris, “Pressure Dependence of Reaction Rate,” Rev. Sci. Inst. 58:1251(1987).Google Scholar
  8. 8k.
    R. J. Nichols, “IR Spectroscopy at the Solid-Solution Interface,” in Adsorption of Molecules at Metal Electrodes, J. Lipkowski and P. N. Ross, eds., VCH Publishers, Weinheim (1992).Google Scholar
  9. 9k.
    W. K. Paik, “Ellipsometry in Electrochemistry,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 25, p. 191, Plenum, New York (1993).Google Scholar
  10. 10k.
    P. A. Christensen and A. Hamnett, Techniques and Mechanisms in Electrochemistry, in Particular Impedance, pp. 154–168, Blackie, London (1994).Google Scholar
  11. 11k.
    C. M. A. Brett and A. M. D. Brett, Electrochemistry, pp. 156–189, Oxford University Press, Oxford (1993).Google Scholar
  12. 12k.
    Techniques for the Characterization of Electrodes and Electrode Processes, R. Varma and J. R. Selman, eds., Wiley, New York (1994).Google Scholar
  13. 13k.
    Physical Electrochemistry, I. Robinstein, ed., Marcel Dekker, New York (1995).Google Scholar
  14. 14k.
    T. Iwasite and F. C. Nart, “FTIR,” inAdvances in Electrochemical Science and Engineering, C. W. Tobias and H. Gerischer, eds., Vol. 4, p. 123, Interscience, New York (1990).Google Scholar
  15. 15k.
    W. Plieth, W. Kozlowski, and T. Twomey, “Ellipsometry of Organic Layers,” in Adsorption of Molecules on Metals, J. Lipkowski and P. N. Ross, eds., p. 1, VCH Publishers, Weinheim (1992).Google Scholar
  16. 16k.
    A. Aramata, “On Single Crystal Techniques in Electrode Kinetics,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, R. E. White, and B. E. Conway, eds., Vol. 31, p. 181, Plenum, New York (1997).Google Scholar
  17. 17k.
    M. Makri, G. C. Vayenas, S. Bebelis, K. H. Besocke, and C. Cavalca, “Atomic Resolution Solution by STM,” Surf. Sci. 369:351 (1996).CrossRefGoogle Scholar
  18. 18k.
    G. Wu and D. Baikey, “Atomic Force Microscopy Study of Cu Deposition in Motion,” J. Electrochem. Soc. 144:2261 (1997).Google Scholar
  19. 19k.
    K. Chandrasekaran and J. O’M. Bockris, “In Situ Spectroscopic Study of Intermediates in an Electrochemical Reaction,” Surf. Sci. 185:495 (1987).Google Scholar
  20. 20k.
    A. Szucs, D. Kitchens, and J. O’M. Bockris, “Ellipsometric Study of Di-pyridyl on Au,” Electrochim. Acta 37:403 (1992).CrossRefGoogle Scholar
  21. 21k.
    G. S. Popkirov and S. Ottow, 0147In Situ Impedance Spectroscopy of Electrochemical Si Formation,” J. Electroanal. Chem. 429:47 (1997).CrossRefGoogle Scholar
  22. 22k.
    J. F. Aebersold and D. A. Stadelmann, “Rotating Disc Techniques,” Ultramicroscopy, 62:157(1996).Google Scholar

Further Reading Seminal

  1. 1l.
    R. Parsons, Trans. Faraday Soc. 147: 1332 (1951). General scheme for current-potential relations and mechanism determination.Google Scholar
  2. 2l.
    E. C. Potter, J. Chem. Phys. 20: 614 (1952). Use of the stoichiometric number.Google Scholar
  3. 3l.
    K. J. Vetter, Electrochemical Kinetics, Ch. 3, on electrochemical reaction orders, Academic Press, New York (1967).Google Scholar

Papers

  1. 1m.
    J. O’M. Bockris, J. Chem. Ed. 50: 839 (1973).Google Scholar
  2. 2m.
    I. Taniguchi, in Modern Aspects of Electrochemistry, J. O’M. Bockris, R. White, and B. E. Conway, eds., Vol. 20, p. 137, Plenum, New York (1989). Mechanism in the reduction of CO 2 Google Scholar
  3. 3m.
    L. M. Vracar and D. M. Drazic, J. Electroanal. Chem. 265: 171 (1989). More knowledge from current potential curves.CrossRefGoogle Scholar
  4. 4m.
    P. Nowak and W. Vielstich, J. Electrochem. Soc. 137: 1036 (1990). Polymerization reactions.Google Scholar
  5. 5m.
    A. Zagiel, P. Natashan, and E. Gileadi, Electrochim. Acta 35: 1019 (1990). Complex mechanisms.CrossRefGoogle Scholar
  6. 6m.
    T. Z. Fahidy and Z. H. Gu, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 27, p. 383, Plenum, New York (1995). Dynamics of electrode processes.Google Scholar
  7. 7m.
    M. M. Scherer, J. C. Westall, M. Ziomek-Moroz, and P. G. Tratnyek, Environ. Sci. Technol. 31: 2385 (1997). Kinetics of carbon tetrachloride reduction.CrossRefGoogle Scholar
  8. 8m.
    T. Frelink, W. Visscher, A. P. Cox, and J. A. R. van Veen, Ber. Gunsenges Phys. Chem. 100:599 (1996). The role of surface oxides.Google Scholar
  9. 9m.
    R. Adzic, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 163, Plenum, New York (1990). Reaction kinetics on metal single-crystal electrode surfaces.Google Scholar

Further Reading Seminal

  1. 1n.
    A. N. Frumkin, Z. Physik. 35: 792 (1926).CrossRefGoogle Scholar
  2. 2n.
    M. Temkin, Acta Physicachim. URSS, 12: 327 (1940).Google Scholar
  3. 3n.
    E. Gileadi and B. E. Conway, in Modern Aspects of Electrochemistry, J. O’M. Bockris, and B. E. Conway, eds., Vol. 3, p. 347, Plenum, New York (1964).Google Scholar

Modern

  1. 1o.
    C. M. A. Brett and A. M. O. Brett, Electrochemistry, p. 55, Oxford Science Publications, Oxford University Press, Oxford (1993).Google Scholar
  2. 2o.
    F. A. Christensen and A. Hamnett, Techniques and Mechanism in Electrochemistry, p. 10, Blackie, London (1993).Google Scholar
  3. 3o.
    E. Gileadi, Electrode Kinetics for Chemists, Engineers and Materials Scientists, pp. 266–271, VCH Publishers, Weinheim (1993).Google Scholar
  4. 4o.
    C. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, VCH Publishers, Weinheim (1998) (particularly Chapter 6).Google Scholar

Further Reading Seminal

  1. 1p.
    A. Damjanovic, T. H. V. Setty, and J. O’M. Bockris, J. Electrochem. Soc. 113: 429 (1960).Google Scholar
  2. 2p.
    H. Seither, H. Fischer, and L. Albert, Electrochim. Acta 2: 97 (1960).Google Scholar
  3. 3p.
    R. Piontelli, G. Poli, and G. Serrevalle, in Transactions of the Symposium on Electrode Processes, E. Yeager, ed., p. 245, Wiley, New York (1961).Google Scholar

Modern

  1. 1q.
    J. Clavillier, R. Faure, G. Guinet, and R. Durand, J. Electroanal. Chem. 107: 205 (1980).Google Scholar
  2. 2q.
    A. Hamlin, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 16, p. 1, Plenum, New York (1985).Google Scholar
  3. 3q.
    K. Adzic, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 188, Plenum, New York (1990).Google Scholar
  4. 4q.
    H. Gasteiger, N. Markovic, P. N. Ross, and C. J. Cairns, J. Phys. Chem. 97: 12020 (1993).CrossRefGoogle Scholar
  5. 5q.
    H. A. Gasteiger, N. Markovic, P. N. Ross, and C. J. Cairns, J. Electrochem. Soc. 141: 1795 (1994).Google Scholar
  6. 6q.
    T. Fukudu and A. Aramato, Electrochem. Soc. Proc. 96–8:96 (1996).Google Scholar
  7. 7q.
    H. You, Z. Nagy, D. J. Zurowski, and R. P. Chierello, Electrochem. Soc. Proc. 96–8: 136 (1996).Google Scholar
  8. 8q.
    C. Stuhlmann, B. Wohlmann, M. Kruft, and K. Wandelt, Electrochem. Soc. Proc. 96–8:203 (1996).Google Scholar

Further Reading Seminal

  1. 1r.
    A. E. Fick, Pogg. Ann. 94: 59 (1855). The first paper relating current density to diffusion.Google Scholar
  2. 2r.
    H. J. S. Sand, Phil. Mag. 1: 45 (1900). The transition time at constant current, diffusion control.Google Scholar
  3. 3r.
    F. C. Cottrell, Z. Physikal. Chem. (Leipzig) 42: 358 (1903). Time dependence of current under diffusion control at constant potential.Google Scholar
  4. 4r.
    T. R. Rosebrugh and W. L. Miller, J. Phys. Chem. 14: 816 (1910). Generalization of current as a function of time—particularly under periodic function of time.CrossRefGoogle Scholar
  5. 5r.
    D. Ilkovic, Coll. Czech. Chem. Comm. 6: 495 (1934).Google Scholar
  6. 6r.
    V. G. Levich, Acta Physicochem. URSS 17: 252 (1942). Early paper in applying hydrodynamic theory to electrochemistry.Google Scholar
  7. 7r.
    J. N. Agar, Discuss. Faraday Soc. 1:26 (1947). First paper on dimensional analysis applied to electrochemical equations.Google Scholar
  8. 8r.
    C. Wagner, J. Electrochem. Soc. 95: 161 (1949). Calculation of current at vertical electrodes with natural convection.Google Scholar
  9. 9r.
    C. R. Wilke, M. Eisenberg, and C. W. Tobias, J. Electrochem. Soc. 100: 513 (1953). Hydrodynamic factors and the limiting current.Google Scholar
  10. 10r.
    W. Vielstich, Z. Elektrochemie 57: 646 (1953). Diffusion layer related to hydrodynamic boundary layer.Google Scholar
  11. 11r.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962). The classic text in the field.Google Scholar

Modern

  1. 1s.
    P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York (1952). Contains much seminal work showing the evolution away from the pure diffusion control and the introduction of “activation” overpotential, i.e., interfacial control.Google Scholar
  2. 2s.
    A. C. Riddiford, “Rotating Disc Systems,” in Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. IV, Ch. 2, Interscience, New York (1966).Google Scholar
  3. 3s.
    N. Ibl, “Fundamentals of Transport,” in Comprehensive Treatise in Electrochemistry, E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, eds., Vol. 6, p. 133, Plenum, New York (1987).Google Scholar
  4. 4s.
    C. M. Brett and A. M. A. Brett, Electrochemistry, Ch. 8 (hydrodynamics), Oxford University Press, Oxford (1993).Google Scholar
  5. 5s.
    Keith R. Oldham and Jan C. Myland, Fundamentals of Electrochemical Science, Ch. 7, (transport), Academic Press, San Diego (1994).Google Scholar
  6. 6s.
    A. Bard and B. Faulkner, Electrochemical Methods, 2nd ed., Interscience, New York (1998). A classic text oriented to transport and its role in electroanalytical chemistry.Google Scholar

Further Reading Seminal

  1. 1t.
    R. Parsons, Trans. Faraday Soc. 47: 1332 (1951). General scheme for mechanism determination.Google Scholar
  2. 2t.
    M. C. Davies, M. Clark, E. Yeager, and F. Hovorka, J. Electrochem. Soc. 106: 56 (1959). Mechanism of H 2 O 2 formation.Google Scholar
  3. 3t.
    V. S. Bagotskii and Y. B. Vasiliev, Electrochim. Acta 12: 1323 (1967). Mechanism of methanol oxidation.Google Scholar
  4. 4t.
    S. Gilmore, J. Phys. Chem. 67: 78 (1963). Mechanism of CO oxidation.Google Scholar
  5. 5t.
    A. T. Kühn, H. Wroblowa, and J. O’M. Bockris, Trans. Faraday Soc. 63: 1458 (1967). Mechanics of the oxidation of ethylene.Google Scholar
  6. 6t.
    E. Gileadi and L. Duic, Electrochim. Acta 13: 1915 (1968). Mechanism of the oxidation of benzene.CrossRefGoogle Scholar

Modern

  1. 1u.
    S. Kunimatsu and H. Kita, J. Electroanal. Chem. 149: 2113 (1986).Google Scholar
  2. 2u.
    E. P. Soponeva, S. Hotchandani, B. A. Kisselev, and C. Arbour, J. Electroanal. Chem. 387: 123 (1995).Google Scholar
  3. 3u.
    S. I. Mho, B. Ortiz, N. Doddepeneni, and S. M. Paik, J. Electrochem. Soc. 142:1047 (1995).Google Scholar
  4. 4u.
    M. P. Doherty, P. A. Christensen, A. Hamnett, and K. Scott, J. Electroanal Chem. 385: 39 (1995).Google Scholar
  5. 5u.
    K. M. Robertson and W. O’Grady, J. Electroanal. Chem. 384: 139 (1995).Google Scholar
  6. 6u.
    H. G. Hambold and X. H. Wang, Nucl. Instrumen. Meth. Phys. Rev., Sec. B 97: 50 (1995).Google Scholar
  7. 7u.
    A. K. Jonscher, J. Mater. Sci. 30: 2491 (1995).Google Scholar
  8. 8u.
    J. M. Tatiobouet, Appl. Catalysis A. General, 148: 213 (1997).Google Scholar
  9. 9u.
    K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Electrochim. Acta 41: 2587 (1996).Google Scholar
  10. 10u.
    A. V. Tripkovic and K. D. Popovic, Electrochim. Acta 41: 2385 (1996).CrossRefGoogle Scholar
  11. 11u.
    W. T. Nappory, H. Laborde, J. M. Leger, and C. Lamy, J. Electroanal. Chem. 404: 153 (1996).Google Scholar
  12. 12u.
    A. S. Areco, M. K. Ravikumar, A. K. Schukla, C. Candieno, V. Antenucci, N. Giordano, and A. Hamnett, J. Appl. Electrochem. 25: 528 (1995).Google Scholar
  13. 13u.
    T. Feelink, W. Vischer, A. P. Cox, and T. A. R. Van Veen, Ber. Buns. Phys. Chem. 100: 599 (1996).Google Scholar
  14. 14u.
    J. W. Schulze and D. Rolle, Canad. J. Chem. 75: 1750 (1997).Google Scholar
  15. 15u.
    M. Osawa, K. Yoshi, K. Ataka, and T. Yotsuyanaga, Langmuir 10: 640 (1994). Submillisecond FTIR.CrossRefGoogle Scholar

Further Reading Seminal

  1. 1v.
    F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. London 120A: 59 (1928). First paper to compare electrode kinetics of H 2 evolution on various substrates.Google Scholar
  2. 2v.
    J. Horiuti and M. Polanyi, Acta Physicochem. URSS 2: 505 (1935). First theory of electrocatalysis.Google Scholar
  3. 3v.
    B. E. Conway and J. O’M. Bockris, J. Chem. Phys. 26: 532 (1957). Hydrogen evolution catalysts in two groups rationalized.CrossRefGoogle Scholar
  4. 4v.
    W. T. Grubb, U.S. Patent 2, 913, 511, 1959.Google Scholar
  5. 5v.
    A. Damjanovic, A. Dey, and J. O’M. Bockris, J. Catalysis 4: 721 (1965). Catalytic surface of Pt-Rh alloy in solution.CrossRefGoogle Scholar
  6. 6v.
    A. Damjanovic, V. Brusic, and J. O’M. Bockris, J. Phys. Chem. 71: 2741 (1967). Catalysis of electrochemical O 2 reduction, related to electronic structure of Au/Pd alloys.CrossRefGoogle Scholar
  7. 7v.
    J. O’M. Bockris and S. U. M. Kahn, Surface Electrochemistry, pp. 292–294, Plenum, New York, 1993. Theory of volcano relations in electrochemical reactions.Google Scholar
  8. 8v.
    J. O’M. Bockris, R. Mannan, and A. Damjanovic, J. Chem. Phys. 48: 1989 (1968). Electrocatalysis and the electronic work function.Google Scholar

Modern

  1. 1w.
    F. C. Anson, C. L. Ni and J. M. Saveant, J. Am. Chem. Soc. 107: 3442 (1982).Google Scholar
  2. 2w.
    A. J. Appleby, in Comprehensive Treatise of Electrochemistry, B. E. Conway, J. O’M. Bockris, E. Yeager, S. U. M. Khan, and R. E. White, eds., Vol. 7, p. ? Plenum, New York (1983).Google Scholar
  3. 3w.
    J. O’M. Bockris and T. Ottagaewa, J. Phys. Chem. 87: 2960 (1983).Google Scholar
  4. 4w.
    Y. B. Vasiliev, V. S. Bagotski, and V. A. Gromyko, J. Electroanal. Chem. 176: 247 (1984).Google Scholar
  5. 5w.
    M. S. Taresevitch, J. Electroanal. Chem. 206: 217 (1986).Google Scholar
  6. 6w.
    A. Hamlin, Trends in Electrochemistry, NATO AS1 Series, Vol. 179, p. 19, Reidel, Dordrecht, The Netherlands (1986).Google Scholar
  7. 7w.
    M. E. G. Lyons, Ann. Rep. Chem. Soc. 87: 119 (1990).Google Scholar
  8. 8w.
    R. Adzic, in Modern Aspects of Electrochemistry, B. E. Conway, J. O’M. Bockris, and R. E. White, eds., Vol. 21, p. 1, Plenum, New York (1990).Google Scholar
  9. 9w.
    V. S. Bagotski, Y. B. Vasiliev, and V. A. Grinbergi, J. Electroanal. Chem. 283: 359 (1990).Google Scholar
  10. 10w.
    C. Quijada, J. L. Vasquez, and A. Aldez, J. Electroanal. Chem. 414: 229 (1990).Google Scholar
  11. 11w.
    H. Kita, S. Ye, and K. Sagimuri, J. Electroanal. Chem. 297: 283 (1991).CrossRefGoogle Scholar
  12. 12w.
    B. E. Conway and T. Tilak, Advances in Catalysis 38: 1 (1992). Major review.Google Scholar
  13. 13w.
    S. J. Dong, Electrochim. Acta 40: 2785 (1995).Google Scholar
  14. 14w.
    O. A. Petrii, C. Y. Vasina, and Y. D. Seropagin, Russ. J. Electrochem. 31: 1274 (1995).Google Scholar
  15. 15w.
    G. Jerkiewicz and A. Zolfaghari, J. Phys. Chem. 100: 8454 (1996).CrossRefGoogle Scholar
  16. 16w.
    H. Y. Chen, D. M. Zhou, J. J. Xu, and H. Q. Fang, J. Electroanal. Chem. 422: 21 (1997).CrossRefGoogle Scholar
  17. 17w.
    J. Stepp and J. B. Schlenoff, J. Electrochem. Soc. 144: 155 (1997).Google Scholar
  18. 18w.
    J. O’M. Bockris and R. Abdu, J. Electroanal. Chem. 448: 189 (1998).Google Scholar

Seminal

  1. 1x.
    F. Kuhlschutter and J. Torricelli, Z. Elektrochem. 38: 213 (1932). Photography of moving layers in electrogrowth.Google Scholar
  2. 2x.
    C. Burton, F. Cabrera, and C. Frank, Nature 163: 398 (1949). Nucleation unnecessary; crystal growth can occur by rotation of spirals originating in screw dislocations.Google Scholar
  3. 3x.
    R. Kaischew, Bull. Acad. Bulg, Sci. Phys. 1: 100 (1950). Theory of 2D nucleation.Google Scholar
  4. 4x.
    R. Kaischew, E. Budevski, and J. Malinowski, Z. Physikal. Chem. 204: 348 (1955). Nucleation rate.Google Scholar
  5. 5x.
    C. Vermilyeo, J. Chem. Phys. 28: 1254 (1956). Screw dislocation theory: kinetics of rotation.Google Scholar
  6. 6x.
    O. Kardos and O. Foulke, American Electroplaters 43: 172 (1956). Mechanistic theory of leveling agents.Google Scholar
  7. 7x.
    B. E. Conway and J. O’M. Bockris, Proc. Roy. Soc. London 248A: 394 (1958). Calculations on competing steps in electrochemical metal deposition.Google Scholar
  8. 8x.
    M. Fleischmann and R. Thirsk, Electrochim. Acta 2: 22 (1960). Potentiostatic transient and crystal growth.CrossRefGoogle Scholar
  9. 9x.
    J. O’M. Bockris and J. Barton, Proc. Roy. Soc. London 268A: 485 (1962). Quantitative theory of dendritic growth.Google Scholar
  10. 10x.
    M. Mullins and P. Hirth, J. Phys. Chem. Solids 24: 1391 (1963). Bunching theory.CrossRefGoogle Scholar

Monograph

  1. 1y.
    E. Budevski, G. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Crystal Growth, VCH Publishers, Weinheim (1996).Google Scholar

Modern

  1. 1z.
    E. Budevski, in Progress in Surface Science, Vol. II, p. 71, Academic Press, New York (1976).Google Scholar
  2. 2z.
    E. Budevski, V. Bortanou, and G. Starkov, Ann. Rev. Mat. Sci. 10: 15 (1980).CrossRefGoogle Scholar
  3. 3z.
    S. Sweshirajen and S. Bruckenstein, J. Electrochem. Soc. 129: 1202 (1982).Google Scholar
  4. 4z.
    B. Scharifker and G. J. Wills, Electrochim. Acta 28: 879 (1983).CrossRefGoogle Scholar
  5. 5z.
    E. Budevski, in Comprehensive Treatise in Electrochemistry, B. E. Conway, J. O’M. Bockris, E. Yeager, S. U. M. Khan, and R. E. White, eds., p. 399, Plenum, New York (1983).Google Scholar
  6. 6z.
    Blum H. D. Abruna, J. G. Gordon, G. l. Borges, M. G. Samant, and O. R. Melroy, J. Chem. Phys. 85: 6732 (1986).Google Scholar
  7. 7z.
    M. Szklarczyk, O. Velev, and J. O’M. Bockris, J. Electrochem. Soc. 136: 2433 (1989).Google Scholar
  8. 8z.
    R. Sonnenfeld, J. Schneir, and D. K. Hansma, in Modern Aspects of Electrochemistry, 9. R. E. White, J. O’M. Bockris, and B. E. Conway, eds., Vol. 21, p. 1, Plenum, New York (1990).Google Scholar
  9. 10z.
    C. Kolla, N. Spyrellis, J. Amplard, M. Fromnent, and G. Maurin, J. Appl. Electrochem. 20: 1241 (1990).Google Scholar
  10. 11z.
    N. Battina, T. Will, and D. M. Kolb, Faraday Discuss. 94: 93 (1992). G. Staynor, Electrochim. Acta 37: 2357 (1992).Google Scholar
  11. 12z.
    W. Obretenov, U. Schmidt, W. J. Lorenz, G. Staikov, E. Budevski, D. Carnal, U. Muller, H. Siegenthaler, and E. Schmidt, J. Electrochem. Soc. 140: 692 (1993).Google Scholar
  12. 13z.
    S. G. Corcoran, G. S. Chakovova, and K. Siradski, Phys. Rev. Lett. 71: 1588 (1993).CrossRefGoogle Scholar
  13. 14z.
    V. Battina, A. S. Dakkouri and D. M. Kolb, J. Electroanal. Chem. 370: 370 (1994).Google Scholar
  14. 15z.
    M. Ditterlie, T. Will, and D. M. Kolb, Surface Sci. 327: L495 (1995).Google Scholar
  15. 16z.
    M. H. Holzle, V. Zwing, and D. M. Kolb, Electrochim. Acta 40: 1237 (1995).CrossRefGoogle Scholar
  16. 17z.
    P. Mrazek, Y. E. Sung, M. Han, M. Gamboa-Aldeco, A. Wieckowski, C. Chen, and A. Gewirth, Electrochim. Acta 40: 17 (1995).Google Scholar
  17. 18z.
    K. Ogaki and K. Itaya, Electrochim. Acta 40: 1249 (1995).CrossRefGoogle Scholar
  18. 19z.
    U. Schmidt, S. Vinzelberg, and G. Staikov, Surf. Sci. 335: 32 (1995).CrossRefGoogle Scholar
  19. 20z.
    W. J. Lorenz and G. Staikov, Surf. Sci. 335: 32 (1995).CrossRefGoogle Scholar
  20. 21z.
    R. T. Porzschke, G. A. Gervasi, S. Vinzelberg, G. Staikov, and W. J. Lorenz, Electrochim. Acta 40: 1469 (1995).Google Scholar
  21. 22z.
    T. Leava and W. Schmickler, Electrochim. Acta 40: 37 (1995).Google Scholar
  22. 23z.
    Z. Shi, S. Wu, and J. Lipkowski, Electrochim. Acta 40: 9 (1995).Google Scholar
  23. 24z.
    W. J. Lorenz and G. Staikov, Surf. Sci. 335: 32 (1995).CrossRefGoogle Scholar
  24. 25z.
    R. T. Potschke, G. A. Gervasi, S. Vinzelberg, G. Staikov, and D. W. Lorenz, Electrochim. Acta 40: 1469 (1995).Google Scholar
  25. 26z.
    A. R. Despic and D. D. Jovic, in Modern Aspects of Electrochemistry, B. E. Conway, J. O’M. Bockris, and R. E. White, eds., Vol. 27, p. 143, Plenum, New York (1995).Google Scholar
  26. 27z.
    G. Jerkiewicz and A. Zolfaghari, J. Phys. Chem. 100: 8454 (1996).CrossRefGoogle Scholar
  27. 28z.
    N. M. Markovic, H. A. Gesteiger, Chris A. Lucas, I. M. Tidswell, and P. Ross, Surf. Sci. 335: 91 (1995).CrossRefGoogle Scholar
  28. 29z.
    K. Shashikata, Y. Matsui, K. Itaya, and M. P. Soriaga, J. Phys. Chem. 100: 20027 (1996).Google Scholar

Further Reading Seminal

  1. 1aa.
    C. Wagner, “Electrolytic Transport of Ions Through Solids,” Adv. Catalysis 21: 323 (1970).Google Scholar
  2. 2aa.
    C. G. Vayenas and H. M. Saltzburg, “Electrochemical Promotion of Chemical Catalysis,” J. Catal. 57: 296 (1979).CrossRefGoogle Scholar
  3. 3aa.
    J. Pritchard, “Chemical Catalysts, Electrochemically Caused,” Nature 343: 592 (1990).CrossRefGoogle Scholar

Review

  1. 1ab.
    C. G. Vayenas, M. M. Jaksic, S. I. Bebelis, and S. G. Neophytides, “The Electrochemical Activation of Catalytic Reactions,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 29, p. 57, Plenum, New York (1996).Google Scholar

Further Reading

  1. 1ac.
    Dong-Hyun Kim, Koji Aoki, and O. Takano, J. Electrochem. Soc. 142: 3763 (1995).Google Scholar
  2. 2ac.
    Melvin De Silva and Y. Schachem-Diamond, J. Electrochem. Soc. 143: 3513 (1996).Google Scholar
  3. 3ac.
    S. Armyanov, R. Winand, and J. Vereeken, J. Electrochem. Soc. 143: 3092 (1996).Google Scholar
  4. 4ac.
    J. Ghorogchian and J. O’M. Bockris, Int. J. Hydrogen Energy 10: 101 (1984).Google Scholar

Further Reading Review

  1. See earlier papers reviewed by J. Wojtowicz, in Modem Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Vol. 8, p.47, Plenum, New York (1972).Google Scholar

Papers

  1. 1ad.
    B. J. Hwang and S. H. Lin, J. Electrochem. Soc. 142: 3749 (1995).Google Scholar
  2. 2ad.
    B. Bush and J. Newman, J. Electrochem. Soc. 142: 3771 (1995).Google Scholar
  3. 3ad.
    S. Nakabayashi, K. Zama, and K. Uosaki, J. Electrochem. Soc. 143: 2258 (1996).Google Scholar
  4. 4ad.
    C. W. Kim, I. H. Yeo, and W. K. Paik, Electrochim. Acta 18: 2829 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations