Advertisement

Keywords

Double Layer Surface Excess Differential Capacity Test Charge Interphase Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

Seminal

  1. 1.
    W. Gibbs, Collected Works: The Scientific Papers of J. Willard Gibbs Vol 1: Thermodynamics, Dover, New York (1961).Google Scholar
  2. 2.
    A. Frumkin and A. Gorodetzkaya, “Electrocapillary Phenomena with Amalgams,” Z.Phys. Chem. 136: 451 (1928).Google Scholar
  3. 3.
    E. Lange and K. P. Miščenko, “On the Thermodynamics of Ionic Solvation,” Z.Phys. Chem. A149: 1 (1930).Google Scholar
  4. 4.
    R. Parsons, “Equilibrium Properties of Electrified Interphases,” in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds. Vol. 1, p. 103, Butterworths, London (1954).Google Scholar
  5. 5.
    J. E. B. Randies, “Real Hydration Energies fromIons,” Trans. Faraday Soc. 52:1573(1956).Google Scholar
  6. 6.
    J. O’M. Bockris and S. D. Argade, “Work Function of Metals and the Potential at which They Have Zero Charge in Contact with Solutions,” J. Chem. Phys. 49: 5133 (1968).Google Scholar
  7. 7.
    S. U. M. Khan, R. C. Kainthla, and J. O’M. Bockris, “The Redox Potential and the Fermi Level in Solution,” J. Phys. Chem. 91: 5974 (1987).CrossRefGoogle Scholar

Reviews

  1. 1a.
    R. Parsons, “The Single Electrode Potential: Its Significance and Calculation” and “Standard Electrode Potentials: Units, Conventions and Methods of Determination,” in Standard Potentials in Aqueous Solution, A. J. Bard, R. Parsons, and J. Jordan, eds. Chs. 1 and 2, Marcel Dekker, New York (1985).Google Scholar
  2. 2a.
    S. Trasatti, “The Absolute Electrode Potential: An Explanatory Note,” Pure & Appl. Chem. 58(7): 955 (1986).Google Scholar
  3. 3a.
    Howard Reiss, “The Absolute Electrode Potential—Tying the Loose Ends,” J. Electrochem. Soc.: Reviews and News 135: 247C (1988).Google Scholar

Papers

  1. 1b.
    S. Trasatti, Electrochimica Acta 35(1): 269 (1990).CrossRefGoogle Scholar
  2. 2b.
    S. Trasatti, Electrochimica Acta 36(11/12): 1659 (1991).Google Scholar
  3. 3b.
    F. T. Wagner, in Structure of Electrified Interfaces, J. Lipkowski and P. N. Ross, eds., p. 309, VCH Publishers, New York (1993).Google Scholar
  4. 4b.
    S. Trasatti, Russian J. Electrochem. 31(8): 713 (1995).Google Scholar
  5. 5b.
    I. Villegas, R. Gomez, and M. J. Weaver, J. Phys. Chem. 99: 14832 (1995).CrossRefGoogle Scholar
  6. 6b.
    N. Sato, Russian J. Electrochem. 31(8): 837 (1995).Google Scholar
  7. 7b.
    S. Trasatti and L. M. Doubova, J. Chem. Soc. Faraday Trans. 91(19): 3311 (1995).CrossRefGoogle Scholar

Seminal

  1. 1c.
    G. Lippmann, Ann. Chim. Phys. (Paris) 5: 494 (1875). Shows that electrocapillary curves yield surface charge.Google Scholar
  2. 2c.
    W. Gibbs, The Scientific Papers of J. Willard Gibbs Vol. 1: Thermodynamics, Dover, New York (1961).Google Scholar
  3. 3c.
    E. A. Guggenheim and N. K. Adam, “Thermodynamics of Adsorption at the Surface of Solutions,” Proc. Roy. Soc. (London) A139: 218 (1933).Google Scholar
  4. 4c.
    D. C. Grahame, “The Electrical Double Layer and the Theory of Electrocapillary,” Chem. Revs. 41: 441 (1947).CrossRefGoogle Scholar
  5. 5c.
    R. Parsons, “Equilibrium Properties of Electrified Interphases,” in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. Conway, eds., Vol. 1, Butterworths London (1954).Google Scholar

Reviews

  1. 1d.
    A. Hamelin, “The Surface State and the Potential of Zero Charge of Gold (100)-A further Assessment,” J. Electroanal. Chem. 386(1–2): 1 (1995).Google Scholar

Papers

  1. 1e.
    J. Lipkowski and L. Stolberg, “Molecular Adsorption at Gold and Silver Electrodes,” in Adsorption of Molecules at Metal Electrodes, J. Lipkowski and P. N. Ross, eds., p. 171, VCH Publishers, New York (1992).Google Scholar
  2. 2e.
    I. R. Peterson, Colloids and Surfaces: Physiochemical and Engineering Aspects, 102: 21 (1995).Google Scholar
  3. 3e.
    M. J. Honeychruch and M. J. Ridd, J. Electroanal. Chem. 418(1–2): 185 (1996).Google Scholar
  4. 4e.
    J. Dabkowski, I. Zagorska, M. Dabkowska, Z. Koczorowski, and S. Trasatti, J. Chem. Soc. Faraday Trans. 92(20): 3873 (1996).CrossRefGoogle Scholar
  5. 5e.
    I. O. Efimov and K. E. Heusler, J. Electroanal. Chem. 414(1): 75 (1996).CrossRefGoogle Scholar
  6. 6e.
    M. L. Foresti, M. Innocenti, and G. Pezzatini, Langmuir 12(4): 1061 (1996).CrossRefGoogle Scholar
  7. 7e.
    M. Turowska, D. Kazmierczak, and T. Blaszczyk, Polish J. Chem. 71(2): 221 (1997).Google Scholar
  8. 8e.
    J. H. Chen, S. H. Si, L. H. Nie, and S. Z. Yao, Electrochimica Acta 42(4): 689 (1997).Google Scholar

Seminal

  1. 1f.
    H. L. von Helmholtz, “The Double Layer,” Wied. Ann. 7: 337 (1879).Google Scholar
  2. 2f.
    G. Gouy, “Constitution of the Electric Charge at the Surface of an Electrolyte,” J. Physique 9: 457 (1910).Google Scholar
  3. 3f.
    D. L. Chapman, “Diffuse Distribution of Adsorbed Ions,” Phil. Mag. 25: 475 (1913).Google Scholar
  4. 4f.
    O. K. Rice, “Application of the Fermi Statistics to the Distribution of Electrons under Fields in Metals and the Theory of Electrocapillarity, Phys. Rev. 31: 1051 (1928).CrossRefGoogle Scholar
  5. 5f.
    J. O’M. Bockris and M. A. Habib, “The Electron Overlap Potential at Metal-Solution Interfaces,” J. Electroanal. Chem. 68: 367 (1976).Google Scholar
  6. 6f.
    W. Schmickler, “A Jellium-Dipole Model for the Double Layer,” Electroanal. Chem. 150: 19 (1983).CrossRefGoogle Scholar

Reviews

  1. 1g.
    M. Philpott, “Electrochemical Contact Adsorption Site Changes Driven by Field and Charge: Fact and Theory,” in Cluster Models for Surface and Bulk Phenomena, G. Pacchioni ed., Plenum, New York (1992).Google Scholar
  2. 2g.
    W. Schmickler, “Electronic Effects in the Electric Double Layer,” Chem. Rev. 96: 3177 (1996).CrossRefGoogle Scholar
  3. 3g.
    J. W. Halley, “Studies of the Interdependence of Electronic and Atomic Dynamics and Structure at the Electrode-Electrolyte Interface,” Electrochim. Acta. 41: 2229 (1996).CrossRefGoogle Scholar
  4. 4g.
    R. Parsons, “The Metal-Liquid Electrolyte Interface,” Solid State Ionics 94: 91 (1997).CrossRefGoogle Scholar

Papers

  1. 1h.
    P. A. Rikvol, Electrochim. Acta 36: 1689 (1991).Google Scholar
  2. 2h.
    V. Fieldman and M. Partenskii, Electrochim. Acta 36: 1703 (1991).Google Scholar
  3. 3h.
    W. Schmickler and E. Leiva, Molecular Physics 86: 737 (1995).Google Scholar
  4. 4h.
    X. P. Gao and H. S. White, J. Electroanal. Chem. 389: 13 (1995).CrossRefGoogle Scholar
  5. 5h.
    S. Amokrane, Electrochim Acta 41: 2097 (1996).CrossRefGoogle Scholar
  6. 6h.
    J. W. Halley, Electrochim. Acta 41: 2229 (1996).CrossRefGoogle Scholar
  7. 7h.
    J. N. Glosli and J. N. Philpott, Electrochim. Acta 41: 2145 (1996).CrossRefGoogle Scholar
  8. 8h.
    B. B. Damaskin and V. A. Safonov, Electrochim. Acta 42: 737 (1997).CrossRefGoogle Scholar
  9. 9h.
    Y. Shingaya and M. Ito, Surface Science 386: 3 (1997).CrossRefGoogle Scholar
  10. 10h.
    D. R. Berard, M. Kinoshita, N. M. Cann, and G. N. Patey, J. Chem. Phys. 107: 4719 (1997).Google Scholar
  11. 11h.
    J. C. Shelley, G. N. Patey, D. R. Berard, and G. M. Torrie, J. Chem. Phys. 107: 2122 (1997).CrossRefGoogle Scholar
  12. 12h.
    R. Kjellander and D. J. Mitchell, Molec. Phys. 91: 173 (1997).Google Scholar
  13. 13h.
    R. D. Armstrong and B. R. Horrocks, Solid State Ionics 94: 181 (1997).CrossRefGoogle Scholar
  14. 14h.
    B. B. Damaskin and V. A. Safonov, Electrochim. Acta. 42: 737 (1997).CrossRefGoogle Scholar

Further Reading Seminal

  1. 1i.
    A. Frumkin and A. Gorodetzkaya, “Electrocapillary Phenomena and Layer Formation on the Surface of Liquid Gallium,” Z. Phys. Chem. (Leipzig) 136: 215 (1928).Google Scholar
  2. 2i.
    L. Lange and K. P. Miščenko, ”On the Thermodynamics of Ionic Solvatation,” Z. Phys. Chem. (Leipzig) 149: 1 (1930).Google Scholar
  3. 3i.
    N. F. Mott and R. J. Watts-Tobin, “The Interface Between a Metal and an Electrolyte,” Electrochim. Acta 4: 79 (1961).CrossRefGoogle Scholar
  4. 4i.
    J. O’M. Bockris, M. A. V. Devanathan, and K. Muller, “Water Molecule Model of the Double Layer,” Proc. Roy. Soc. (London) A274: 55 (1963).Google Scholar
  5. 5i.
    J. O’ M. Bockris and M. A. Habib, “The Contribution of the Water Dipoles to Double-Layer Properties,” Electrochim. Acta 22: 41 (1977).Google Scholar
  6. 6i.
    M. A. Habib and J. O’M. Bockris, “Potential-Dependent Water Orientation: An In Situ Spectroscopic Study,” Langmuir 2: 388 (1986).CrossRefGoogle Scholar
  7. 7i.
    M. A. Habib, “Solvent Dipoles at the Electrode-Solution Interface,” in Modern Aspects of Electrochemistry, B. E. Conway and J. O’M. Bockris, eds., Vol. 12, Plenum, New York (1977).Google Scholar

Reviews

  1. 1i.
    K. Heinzinger, “Molecular Dynamics of Water at Interfaces,” in Structure of Electrified Interfaces, J. Lipkowski and P. N. Ross, eds., p. 239, VCH Publishers, New York (1993).Google Scholar
  2. 2i.
    F. Bensebaa and T. H. Ellis, “Water at Surfaces: What Can We Learn from Vibrational Spectroscopy?” Prog. Surf. Sci. 50(1–4): 173 (1995).Google Scholar
  3. 3i.
    J. W. Halley, “Studies of the Interdependence of Electronic and Atomic Dynamics and Structure at the Electrode-Electrolyte Interface,” Electrochim. Acta 41: 2229 (1996).CrossRefGoogle Scholar
  4. 4i.
    R. R. Nazmutdinov and M. S. Shapnik, “Contemporary Quantum Chemical Modelling of Electrified Interfaces,” Electrochim. Acta 41: 2253 (1996).CrossRefGoogle Scholar
  5. 5i.
    I. Benjamin, “Molecular Dynamic Simulations in Interfacial Electrochemistry,” inModern Aspects of Electrochemistry, J. O’M Bockris, B. E. Conway, and R. E. White, eds., Vol. 31, p. 115, Plenum, New York (1997).Google Scholar

Papers

  1. 1j.
    B. B. Damaskin and A. N. Frumkin, Electrochim. Acta 19: 173 (1974).CrossRefGoogle Scholar
  2. 2j.
    R. Parsons, J. Electroanal. Chem. 59: 229 (1975).CrossRefGoogle Scholar
  3. 3j.
    W. R. Fawcett, J. Phys. Chem. 82: 1385 (1978).Google Scholar
  4. 4j.
    R. Guidelli, J. Electroanl. Chem. 197: 77 (1986).Google Scholar
  5. 5j.
    G. M. Torrie and G. N. Patey, Electrochim. Acta 36: 1677 (1991).CrossRefGoogle Scholar
  6. 6j.
    M. Xu, P. Yang, W. Yang, and S. Pang, Vacuum 43: 1125 (1992).Google Scholar
  7. 7j.
    F. Bensebaa and T. H. Ellis, Prog. Surf. Sci. 50(1–4): 173 (1995).Google Scholar
  8. 8j.
    E. Spohr, G. Tóth, and K. Heinzinger, Electrochim. Acta 41: 2131 (1996).CrossRefGoogle Scholar
  9. 9j.
    K. Ataka, T. Yotsuyanagi, and M. Osawa, J. Phys. Chem. 100: 10664 (1996).CrossRefGoogle Scholar
  10. 10j.
    J. C. Shelley, G. N. Patey, D. R. Berard, and G. M. Torrie, J. Chem. Phys. 107: 2122 (1997).CrossRefGoogle Scholar

Further Reading Seminal

  1. 1j.
    I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass in Mica and Platinum,” J. Am Chem. Soc. 40: 1361 (1918).CrossRefGoogle Scholar
  2. 2j.
    A. N. Frumkin, “Surface Tension Curves of the Higher Fatty Acids and the Equations of Conditions of the Surface Layer,” Z Physik. Chem. 116: 466 (1925).Google Scholar
  3. 3j.
    M. Temkin, “Adsorption Equilibrium and the Kinetics of Processes on Non-Homogeneous Surfaces and in the Interaction Between Adsorbed Molecules,” Zhumal Fizichesko i Khimii 15: 296 (1941).Google Scholar
  4. 4j.
    P. J. Flory, “Thermodynamics of High-Polymer Solutions,” J. Chem. Phys. 10: 51 (1942).CrossRefGoogle Scholar
  5. 5j.
    M. L. Huggins, “Thermodynamic Properties of Solutions of Long Chain Compounds,” Ann. N. Y. Acad. Sci. 43: 6 (1942).Google Scholar
  6. 6j.
    W. Lorenz and G. Salie, “Mechanism of the Electrochemical Phase Boundary Reaction,” Z Phys. Chem. (Leipzig) 218: 259 (1961).Google Scholar
  7. 7j.
    J. O’M. Bockris, M. A. V. Devanathan, and K. Muller, “Water Molecule Model of the Double Layer,” Proc. Roy. Soc. (London) A274: 55 (1963).Google Scholar
  8. 8j.
    K. J. Vetter and J. W. Schultze, “Experimental Determination and Interpretation of the Electrosorption Valency, γ,” J. Electroanal. Chem. 44: 63 (1973).Google Scholar
  9. 9j.
    B. E. Conway and H. Angerstein-Kozlowska, “Interaction Effects in Electrodeposited Monolayers and the Role of the ‘Electrosorption Valency’ Factor,” J. Electroanal. Chem. 113: 63 (1980).CrossRefGoogle Scholar
  10. 10j.
    R. Parsons, “The Contribution to the Capacity of an Electrode from a Species Adsorbed with Partial Charge Transfer,” Can. J. Chem. 59: 1898 (1981).Google Scholar
  11. 11j.
    M. A. Habib and J. O’M. Bockris, “Adsorption at the Solid/Solution Interface,” J. Electrochem. Soc. 132: 108 (1985).Google Scholar
  12. 12j.
    J. O’M. Bockris, M. Gamboa-Aldeco, and M. Szklarczyk, “Ionic Adsorption at the Solid-Solution Interphase using Three In Situ Methods,” J. Electroanal. Chem. 339: 355 (1992).Google Scholar

Review

  1. 1k.
    A. J. Bard, H. D. Abruña, C. E. Chidsey, L. R. Faulkner, S. W. Feldberg, K. Itaya, M. Majda, O. Melroy, R. W. Murray, M. D. Porter, M. P. Soriaga, and H. S. White, “The Electrode/Electrolyte Interface—A Status Report,” J. Phys. Chem. 97: 7147 (1993).Google Scholar
  2. 2k.
    J. O’M. Bockris, S. Fletcher, J. J. Gale, S. U. M. Khan, D. M. Kol, D. J. Mazur, K. Uozaki, and N. L. Weinber, “Electrochemistry (1992–1995),” in Annual Reports of the Royal Society of Chemistry, Section C, Vol. 92, p. 23 (1996).Google Scholar
  3. 3k.
    R. Parsons, “The Metal-Liquid Electrolyte Interface,” Solid State Ionics 94: 91 (1997).CrossRefGoogle Scholar
  4. 4k.
    J. Schultze and D. Rolle, “The Partial Discharge of Electrosorbates and Its Influence in Electrocatalysis,” Can. J. Chem. 75: 1750 (1997).Google Scholar

Papers

  1. 1l.
    R. Parsons, Proc. Royal Soc. (London) A261: 79 (1961).Google Scholar
  2. 2l.
    B. E. Conway, H. Angestein-Kozlowska, and H. P. Dhar, Electrochim. Acta 19: 455 (1974).Google Scholar
  3. 3l.
    P. Nikitas, J. Electroanal. Chem. 170: 353 (1984).CrossRefGoogle Scholar
  4. 4l.
    P. Zelenay, M. A. Habib, and J. O’M. Bockris, Langmuir 2: 393 (1986).CrossRefGoogle Scholar
  5. 5l.
    J. Jastrzebska, M. Jurkiewicz-Herbich, and S. Trasatti, J. Electroanal. Chem. 216: 21 (1987).CrossRefGoogle Scholar
  6. 6l.
    P. Nikitas, Electrochim. Acta 33: 647 (1988).Google Scholar
  7. 7l.
    I. Betova, G. Neykov, R. Raicheff, and E. Lazarova, Langmuir 9: 3452 (1993).CrossRefGoogle Scholar
  8. 8l.
    W. Schmickler, in Structure of Electrified Interfaces, J. Lipkowski and P. Ross, eds., p. 201, VCH Publishers, New York (1993).Google Scholar
  9. 9l.
    Z. Shi, J. Lipkowski, M. Gamboa, P. Zelenay, and A. Wieckowski, J. Electroanal. Chem. 366: 317 (1994).CrossRefGoogle Scholar
  10. 10l.
    P. A. Rikvold, M. Gamboa-Aldeco, J. Zhang, M. Han, Q. Wang, H. L. Richards, and A. Wieckowski, Surface Science 335: 389 (1995).CrossRefGoogle Scholar
  11. 11l.
    M. Gamboa-Aldeco, K. Franaszczuk, and A. Wieckowski, in Handbook of Surface Imaging and Visualization, p. 635, CRC Press, Boca Raton, FL (1995).Google Scholar
  12. 12l.
    P. Mrozek, Y.-E. Sung, M. Han, M. Gamboa-Aldeco, A. Wieckowski, Ch.-H. Chen, and A. Gewirth, Electrochim. Acta 40: 17 (1995).CrossRefGoogle Scholar
  13. 13l.
    G. Pacchioni, Electrochmica Acta 41: 2285 (1996).Google Scholar
  14. 14l.
    J. N. Glosli and M. R. Philpott, Electrochim. Acta 41: 2145 (1996).CrossRefGoogle Scholar
  15. 15l.
    H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Jr., Langmuir 12: 1414 (1996).CrossRefGoogle Scholar
  16. 16l.
    J. J. Calvente, Z. Kováčová, R. Andreu, and W. R. Fawcett, J. Electroanal. Chem. 401: 231 (1996).CrossRefGoogle Scholar
  17. 17l.
    Z. Shi and J. Lipkwski, J. Electroanal. Chem. 403: 225 (1996).CrossRefGoogle Scholar
  18. 18l.
    A. Hamelin, in Nanoscale, Probes of the Solid/Liquid Interface. A. A. Gewirth and H. Siegenthaler, eds., Vol. 288, p. 285, NATO ASI Series, Series E: Applied Sciences, Reidel, Dordrecht.Google Scholar
  19. 19l.
    B. K. Niece and A. A. Gewirth, Langmuir 13: 6302 (1997).CrossRefGoogle Scholar
  20. 20l.
    H. Uchida, N. Dceda, and M. Watanabe, J. Electroanal. Chem. 424: 5 (1997).CrossRefGoogle Scholar
  21. 21l.
    K. Arai, F. Kusu, K. Ohe, and K. Takamura, Electrochim. Acta 42: 2493 (1997).CrossRefGoogle Scholar

Further Reading Seminal

  1. 1m.
    A. N. Frumkin, “The Influence of an Electric-Field on the Adsorption of Neutral Molecules,” Z. Phys. 35: 792 (1926).Google Scholar
  2. 2m.
    E. Blomgren, J. O’M Bockris, and C. Jesch, “Adsorption of Aromatic Amines at the Interface of Mercury-Aqueous Solutions,” J. Phys. Chem. 65: 2000 (1961).Google Scholar
  3. 3m.
    J. O’M. Bockris and K. T. Jeng, “In situ Studies of Adsorption of Organic Compounds on Platinum Electrodes,” J. Electroanal. Chem. 330: 541 (1992).Google Scholar

Reviews

  1. 1m.
    R. Guidelli, “Molecular Models of Organic Adsorption at Metal-Water Interfaces,” in Adsorption of Molecules at Metal Electrodes, J. Lipkowski and P. N. Ross, eds., p. 1, VCH Publishers, New York (1992).Google Scholar

Papers

  1. 1m.
    D. Krznanric, P. Valenta, H. W. Nurnberg, and M. Branica, J. Electroanal. Chem. 93: 41 (1978).Google Scholar
  2. 2m.
    J. H. White, M. P. Soriaga, and A. T. Hubbard, J. Electroanal. Chem. 117: 89 (1984).Google Scholar
  3. 3m.
    A. T. Hubbard, Langmuir 6: 97 (1990).CrossRefGoogle Scholar
  4. 4m.
    E. J. Lust, K. K. Lust, and A. A. J. Jänes, Russian J. Electrochem. 31(8): 807 (1995).Google Scholar
  5. 5m.
    E. Umbach, C. Seidel, J. Taborski, R. Li, and A. Soukopp, Phys. Stat. Sol (b) 192: 389 (1995).Google Scholar
  6. 6m.
    V. Lazarescu, Surface Sci. 335: 227 (1995).CrossRefGoogle Scholar
  7. 7m.
    M. H. Holzle, D. M. Kolb, D. Drznaric, and B. Cosovic, Berichte der Bunsen Gesellschaft fur Physikalische Chemie—An International J. of Phys. Chem. 100(11): 1779 (1996).Google Scholar
  8. 8m.
    P. Nikitas, Electrochim. Acta 41(14): 2159 (1996).CrossRefGoogle Scholar
  9. 9m.
    J. L. E. Campbell and F. C. Anson, Langmuir 12: 4008 (1996).CrossRefGoogle Scholar
  10. 10m.
    B. N. Afanas’ev, Yu. P. Akulova, G. S. Aleksandrova, and I. A. Cherepkova, Russ. J. Electrochem. 33(7): 700 (1997).Google Scholar
  11. 11m.
    R. J. Hamers, J. S. Hovis, S. Lee, H. Liu, and J. Shan, J. Phys. Chem. B 101(9): 1489 (1997).CrossRefGoogle Scholar
  12. 12m.
    J. F. E. Gootzen, A. H. Wonders, A. P. Cox, W. Visscehr, and J. A. R. van Veen, J. Molec. Catalysis A: Chemical 127: 113 (1997).Google Scholar
  13. 13m.
    Th. Dretschkow, A. S. Dakkouri, and Th. Wandlowski, Langmuir 13(10): 2844 (1997).CrossRefGoogle Scholar
  14. 14m.
    R. H. Terrill, T. A. Tanzer, and P. W. Bohn, Langmuir 14: 845 (1998).CrossRefGoogle Scholar
  15. 15m.
    E. Lust, A. Jänes, K. Lust, and A. Piidla, J. Electroanal. Chem. 442: 189 (1998).CrossRefGoogle Scholar

Further Reading Seminal

  1. 1n.
    B. V. Deryaguin and L. V. Landau, “The Basic Theory of Interactions Between Colloid Particles,” Acta Physicochim. 44: 633 (1941).Google Scholar
  2. 2n.
    E. J. W. Verwey and J. Th. G. Overbeck, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).Google Scholar

Reviews

  1. 1o.
    S. S. Dukhin, “Electrochemical Characterization of the Surface of a Small Particle and Nonequilibrium Electric Surface Phenomena,” Adv. Coll. Interf. Sci. 61: 17 (1995).CrossRefGoogle Scholar
  2. 2o.
    K. Sarmini and E. Kenndler, “Influence of Organic Solvents on the Separation Selectivity in Capillary Electrophoresis,” J. Chromatog. 792(1–2): 3 (1997).Google Scholar
  3. 3o.
    A. M. Grancaric, T. Pusic, I. Soljacic, and V. Ribitsch, “Influence of Electrokinetic Potential on Adsorption of Cationic Surfactants,” Textile Chemist Colorist 29(12): 33 (1997).Google Scholar

Modern

  1. 1p.
    E. Rodier and J. Dodds, Particle Systems Characterization 12(4): 198 (1995).Google Scholar
  2. 2p.
    J. E. Sandoval and S. M. Chen, Anal. Chem. 68(17): 2771 (1996).CrossRefGoogle Scholar
  3. 3p.
    H. G. Herz and S. K. Ratkje, Electrochm. Acta 41(1): 159 (1996).Google Scholar
  4. 4p.
    J. C. Liu and M. C. Wu, Water Science & Technology 36(4): 127 (1997).CrossRefGoogle Scholar
  5. 5p.
    A. Williams and G. Vigh, Anal. Chem. 69(21): 4445 (1997).Google Scholar
  6. 6p.
    K. J. Kim, A. G. Fane, M. Nystrom, and A. Pihlajamaki, J. Membrane Sci. 134(2): 199 (1997).CrossRefGoogle Scholar
  7. 7p.
    A. Szymczyk, A. Pierre, J. C. Reggiani, and J. Pagetti, J. Membrane Sci. 134(1): 59 (1997).CrossRefGoogle Scholar
  8. 8p.
    M. Pontie, X. Chasseray, D. Lemordant, and J. M. Laine, J. Membrane Sci. 129(1): 125 (1997).CrossRefGoogle Scholar
  9. 9p.
    T. Jimbo, T. M. Higa, N. Minoura, and A. Tanioka, Macromolecules 31(4): 1277 (1998).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Personalised recommendations